Home
Class 10
MATHS
If log(x) 6 = 3, then x =...

If `log_(x) 6 = 3`, then x =

A

`0.500`

B

`1.442`

C

`1.732`

D

`1.817`

Text Solution

Verified by Experts

The correct Answer is:
D

Re-express the equation in exponential form. The base is x, the exponent is 3, and the result is 6 :
`log_(x)6=3`
`x^(3)=6`
`x= root(3)(6)~~ 1.817`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS TOPICS

    KAPLAN|Exercise MISCELLANEOUS TOPICS FOLLOW - UP TEST|12 Videos
  • MATH TEST-01

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • PLANE GEOMETRY

    KAPLAN|Exercise PLANE GEOMETRY FOLLOW - UP TEST|6 Videos

Similar Questions

Explore conceptually related problems

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If 3^(x+1)=6^(log_(2)3) , then x is equal to

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

Let x,y,z be positive real numbers such that log_(2x)z=3, log_(5y)z=6 and log_(xy)z=2/3 then the value of z is

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .