Home
Class 12
MATHS
If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]....

If `A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]]`.Verify that `A^3-6A^2+9A-4I=0`and hence find `A^(-1)`.

Text Solution

AI Generated Solution

To verify that \( A^3 - 6A^2 + 9A - 4I = 0 \) for the matrix \( A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

If A=[2-11-12-11-12]. Verify that A^(3)-6A^(2)+9A-4I=O and hence find A^(-1).

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

If A=[(-1,1,0),(0,-1,1),(2,3,4)] verify that 3/4A'=(3/4A)^'

If A=[[2,-33,4]], show the A^(2)-6A+17I=0. Hence find A^(-1)

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[[1,1,2],[2,1,3],[5,4,9]] then find |A|

NCERT-DETERMINANTS-EXERCISE 4.5
  1. For the matrix A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]. Show that A^3-6A^2...

    Text Solution

    |

  2. For the matrix A=[[3,2],[1,1]], find the numbers a and b such that A^2...

    Text Solution

    |

  3. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  4. Find the inverse the matrix (if it exists)given in[(1, 0, 0),( 0,cosal...

    Text Solution

    |

  5. Let A=[(3, 7),( 2, 5)]and B=[(6, 8),( 7, 9)]. Verify that (A B)^(-1)=B...

    Text Solution

    |

  6. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  7. If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]].Verify that A^3-6A^2+9A-4I=0an...

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  10. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  11. Verify A (a d j A) = (a d j A) A = |A|I " " " " " where A=[(2 ,3),(-4...

    Text Solution

    |

  12. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  13. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[(1, 2, 3),( 0, 2, 4...

    Text Solution

    |

  15. Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[(2,-2),( 4, 3)]

    Text Solution

    |

  17. Find the inverse the matrix (if it exists)given in[(1,-1, 2),( 0, 2,-3...

    Text Solution

    |

  18. If A=[(3, 1),( 1, 2)], show that A^2-5A+5I=0. Hence, find A^(-1).

    Text Solution

    |