Home
Class 12
MATHS
Find adjoint of the matrice in[(1,-1, 2)...

Find adjoint of the matrice in`[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]`

Text Solution

AI Generated Solution

To find the adjoint of the matrix \( A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Cofactors of the Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} M_{ij} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Find adjoint of the matrice in ,[[1,23,4]]

Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1):}]

Find the adjoint of the matrix: [(2,-1),(4,3)]

Find the adjoint of the matrix: [(1,2),(3,4)]

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

Find the adjoint of the matrix: [(2,-4),(-1,2)]

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

The adjoint of the matrix A=[{:(1,0,2),(2,1,0),(0,3,1):}] is

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Find the adjoint of matrix [{:(1,2),(3,7):}]

NCERT-DETERMINANTS-EXERCISE 4.5
  1. For the matrix A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]. Show that A^3-6A^2...

    Text Solution

    |

  2. For the matrix A=[[3,2],[1,1]], find the numbers a and b such that A^2...

    Text Solution

    |

  3. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  4. Find the inverse the matrix (if it exists)given in[(1, 0, 0),( 0,cosal...

    Text Solution

    |

  5. Let A=[(3, 7),( 2, 5)]and B=[(6, 8),( 7, 9)]. Verify that (A B)^(-1)=B...

    Text Solution

    |

  6. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  7. If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]].Verify that A^3-6A^2+9A-4I=0an...

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  10. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  11. Verify A (a d j A) = (a d j A) A = |A|I " " " " " where A=[(2 ,3),(-4...

    Text Solution

    |

  12. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  13. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[(1, 2, 3),( 0, 2, 4...

    Text Solution

    |

  15. Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[(2,-2),( 4, 3)]

    Text Solution

    |

  17. Find the inverse the matrix (if it exists)given in[(1,-1, 2),( 0, 2,-3...

    Text Solution

    |

  18. If A=[(3, 1),( 1, 2)], show that A^2-5A+5I=0. Hence, find A^(-1).

    Text Solution

    |