Home
Class 12
MATHS
Verify A (a d j A) = (a d j A) A = |A|I ...

Verify `A (a d j A) = (a d j A) A = |A|I " " " " " ` where `A=[(2 ,3),(-4,-6)]`

Text Solution

Verified by Experts

Let `A=[(2 ,3),(-4,-6)]`

`adj A= [(-6 ,-3),(4,2)]`


`|A|=|(2 ,3),(-4,-6)|`

` " " " " =2xx(-6)-3xx(-4)=-12+12=0`


Calculating `A(adj A)`

` " " " " =[(2 ,3),(-4,-6)][(-6 ,-3),(4,2)]`

` " " " " =[[2(-6)+3(4),2(-3)+3(2)],[-4(-6)+(-6)4,-4(-3)+(-6)2]]=[[-12+12,-6+6],[+24-24,12-12]]`

` " " " " =[[0,0],[0,0]]`


Similarly, `(adj A)A`

` " " " " =[(-6 ,-3),(4,2)][(2 ,3),(-4,-6)]`

` " " " " =[[-6(2)+(-3)(-4),-6(3)+(-3)(-6)],[4(2)+2(-4),4(3)+2(-6)]]=[[-12+12,-18+18],[8-8,12-12]]`

` " " " " =[[0,0],[0,0]]`


Also, `|A|I`

` " " " " =0I=O`

`therefore` `A (a d j A) = (a d j A) A = |A|I`

Hence proved
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

If A=[1-3 2 0] , write a d j\ A .

If A=[3 1 2-3] , then find |a d j\ A| .

2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

If a unit vector hat a in the plane of vec b=2 hato+ hat j& vec c= hat i- hat j+ hat k is such that vec a vec d where vec d= hat j+2 hat l , then hat a is ( hat i+ hat j+ hat k)/(sqrt(3)) (b) ( hat i- hat j+ hat k)/(sqrt(3)) (2 hat i+ hat j)/(sqrt(5)) (d) (2 hat i- hat j)/(sqrt(5))

Find the volume of the parallelopiped with segments AB, AC and AD as concurrent edges, where : (1) A-=(3,7,4),B-=(5,-2,3),C-=(-4,5,6)andD-=(1,2,3) (2) the position vectors of A,B,C,D are hat(i)+hat(j)+hat(k),2hat(i)-hat(j),3hat(i)-2hat(j)-2hat(k)and3hat(i)+3hat(j)+4hat(k) .

If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b) 2 (c) 2^3 (d) 2^6

Let A = {a _(ij)} be a 3 xx 3 matrix, where a_(ij) {{:( (-1) ^( j -i) if i lt j","),( 2 if i=j","),( (-1) ^(i+j) if i gt j","):} then det (3 Adj (2 A ^(-1))) is equal to _____________

Let A be a 3xx3 square matrix such that A(a d j\ A)=2I , where I is the identity matrix. Write the value of |a d j\ A| .

NCERT-DETERMINANTS-EXERCISE 4.5
  1. For the matrix A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]. Show that A^3-6A^2...

    Text Solution

    |

  2. For the matrix A=[[3,2],[1,1]], find the numbers a and b such that A^2...

    Text Solution

    |

  3. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  4. Find the inverse the matrix (if it exists)given in[(1, 0, 0),( 0,cosal...

    Text Solution

    |

  5. Let A=[(3, 7),( 2, 5)]and B=[(6, 8),( 7, 9)]. Verify that (A B)^(-1)=B...

    Text Solution

    |

  6. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  7. If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]].Verify that A^3-6A^2+9A-4I=0an...

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  10. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  11. Verify A (a d j A) = (a d j A) A = |A|I " " " " " where A=[(2 ,3),(-4...

    Text Solution

    |

  12. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  13. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[(1, 2, 3),( 0, 2, 4...

    Text Solution

    |

  15. Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[(2,-2),( 4, 3)]

    Text Solution

    |

  17. Find the inverse the matrix (if it exists)given in[(1,-1, 2),( 0, 2,-3...

    Text Solution

    |

  18. If A=[(3, 1),( 1, 2)], show that A^2-5A+5I=0. Hence, find A^(-1).

    Text Solution

    |