Home
Class 12
MATHS
If z(1),z(2),z(3) are three points lyin...

If `z_(1),z_(2),z_(3)` are three points lying on the circle `|z|=2`, then minimum value of `|z_(1)+z_(2)|^(2)+|z_(2)+z_(3)|^(2)+|z_(3)+z_(1)|^(2)=`

A

6

B

12

C

15

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \] where \( z_1, z_2, z_3 \) are points on the circle defined by \( |z| = 2 \). ### Step 1: Express the terms in the equation Using the property of modulus, we can express each term as follows: \[ |z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = |z_1|^2 + |z_2|^2 + z_1 \overline{z_2} + \overline{z_1} z_2 \] Since \( |z_1| = |z_2| = |z_3| = 2 \), we have: \[ |z_1|^2 = 4, \quad |z_2|^2 = 4, \quad |z_3|^2 = 4 \] Thus, we can rewrite: \[ |z_1 + z_2|^2 = 4 + 4 + z_1 \overline{z_2} + \overline{z_1} z_2 = 8 + z_1 \overline{z_2} + \overline{z_1} z_2 \] ### Step 2: Write the full expression Now substituting back into the original expression: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 = (8 + z_1 \overline{z_2} + \overline{z_1} z_2) + (8 + z_2 \overline{z_3} + \overline{z_2} z_3) + (8 + z_3 \overline{z_1} + \overline{z_3} z_1) \] This simplifies to: \[ 24 + (z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) + (\overline{z_1} z_2 + \overline{z_2} z_3 + \overline{z_3} z_1) \] ### Step 3: Analyze the cross terms Let’s denote: \[ S = z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1} + \overline{z_1} z_2 + \overline{z_2} z_3 + \overline{z_3} z_1 \] ### Step 4: Use the Cauchy-Schwarz inequality To minimize \( S \), we can apply the Cauchy-Schwarz inequality. Since \( |z_1| = |z_2| = |z_3| = 2 \), we can find that: \[ |z_1 + z_2 + z_3|^2 \leq (|z_1| + |z_2| + |z_3|)^2 = (2 + 2 + 2)^2 = 36 \] Thus, we have: \[ |z_1 + z_2 + z_3|^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + 2S = 12 + 2S \] ### Step 5: Solve for S From \( |z_1 + z_2 + z_3|^2 \leq 36 \): \[ 12 + 2S \leq 36 \implies 2S \leq 24 \implies S \leq 12 \] ### Step 6: Find the minimum value Substituting back into our expression for the minimum value: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \geq 24 + 2S \geq 24 + 2 \cdot (-12) = 24 - 24 = 12 \] ### Conclusion The minimum value of the expression is: \[ \boxed{12} \]

To solve the problem, we need to find the minimum value of the expression: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \] where \( z_1, z_2, z_3 \) are points on the circle defined by \( |z| = 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are three points lying on the circle |z|=2 then the minimum value of the expression |z_1+z_2|^2+|z_2+z_3|^2+|z_3+z_1|^2=

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

Minimum value of |z_(1)+1|+|z_(2)+1|+|z_(1)z_(2)+1| if |z_(1)|=1,|z_(2)|=1 is

If z_(1),z_(2),z_(3) are the vertices of an equilateral triangle,then value of (z_(2)-z_(3))^(2)+(z_(3)-z_(1))^(2)+(z_(1)-z_(2))^(2)

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=|z_3|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If z_(1),z_(2),z_(3) are three distinct non-zero complex numbers and a,b,c in R^(+) such that (a)/(|z_(1)-z_(3)|)=(b)/(|z_(2)-z_(3)|)=(c)/(|z_(3)-z_(1)|),quad then (a^(2))/(z_(1)-z_(2))+(b^(2))/(z_(2)-z_(3))+(c^(2))/(z_(2)-z_(1)) is equal to Re(z_(1)+z_(2)+z_(3))( b) Im g(z_(1)+z_(2)+z_(3))0(d) None of these

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If z_(0), z_(1),z_(2),...,z_(5) be 6^(th) roots of unity where z_(0)=1 then the value of (1)/(3)(2+z_(1))(2+z_(2))...(2+z_(5)) is...

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

VIBRANT-TEST PAPERS-PART-II : MATHEMATICS
  1. bar(OA)=bar(i)+2bar(j)+2bar(k) .In the plane bar(OA) and bar(i) rotate...

    Text Solution

    |

  2. The solution of the differential equation x^(3)(dy)/(dx)+4x^(2) tany=e...

    Text Solution

    |

  3. The values of parameter a for which the point of minimum of the functi...

    Text Solution

    |

  4. If f(x) = a + bx + cx^(2) where c > 0 and b^(2) - 4ac < 0. Then the ar...

    Text Solution

    |

  5. If z(1),z(2),z(3) are three points lying on the circle |z|=2, then mi...

    Text Solution

    |

  6. If a in [-20,0], then the probability that the graph of the function ...

    Text Solution

    |

  7. Let f be a positive differentiable function defined on (0,oo) and phi(...

    Text Solution

    |

  8. Let f(x) = sgn (x) and g (x) = x(x^(2)-5x+6). The function f(g(x)) is ...

    Text Solution

    |

  9. Let A and B be two matrices different from identify matrix such that A...

    Text Solution

    |

  10. Let alpha(n)=1-(1)/(2)+(1)/(3)-(1)/(4)+.........+(-1)^(n-1)(1)/(n),ni...

    Text Solution

    |

  11. If veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+...

    Text Solution

    |

  12. If m is a positive integer, then [(sqrt(3)+1)^(2m)]+1, where [x] denot...

    Text Solution

    |

  13. Let A,B and I (identity matrix) be the matrices of order 4 such that A...

    Text Solution

    |

  14. Five balls b(1),b(2),b(3),b(4),b(5) are kept at random in five foxes B...

    Text Solution

    |

  15. Let A(1),A(2),A(3),.........,A(14) be a regular polygon with 14 sides ...

    Text Solution

    |

  16. If (sum(n=1)^(n=n) (n^(2)+3n+3)(n+1)!)/((n+2)!)=8, then n is equal to ...

    Text Solution

    |

  17. The number of ordered pairs (x,y) satisfying x(sin^(2)x+(1)/x^(2))=2si...

    Text Solution

    |

  18. If (.^(20)C(1))/(1)+(.^(20)C(3))/(2)+(.^(20)C(5))/(3)+.......+("^(20)C...

    Text Solution

    |

  19. If f(x) is a polynomial function satisfying f(x)f(y)=f(x)+f(y)+f(xy)-2...

    Text Solution

    |

  20. The number of points P(x,y) satisfying y^(2)(log(2)(x^(2)+1)+log((x^(2...

    Text Solution

    |