Home
Class 12
MATHS
Let alpha(n)=1-(1)/(2)+(1)/(3)-(1)/(4)+...

Let `alpha(n)=1-(1)/(2)+(1)/(3)-(1)/(4)+.........+(-1)^(n-1)(1)/(n),ninN`, then

A

`(1)/(n+1)+(1)/(n+2)+.........+(1)/(2n)=alpha(2n)`

B

`alpha(2n)lt1AAninN`

C

`alpha(2n)ge(1)/(2)AAninN`

D

`alpha(n)gt(1)/(2)AAninN`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the series defined by \( \alpha(n) \): \[ \alpha(n) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{n-1} \frac{1}{n} \] This series is an alternating series, and we want to evaluate \( \alpha(n) \) for various values of \( n \) and determine its properties. ### Step 1: Understanding the Series The series can be rewritten as: \[ \alpha(n) = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k} \] This means we are summing the terms \( \frac{1}{k} \) with alternating signs. ### Step 2: Evaluating \( \alpha(2n) \) Let's first evaluate \( \alpha(2n) \): \[ \alpha(2n) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + (-1)^{2n-1} \frac{1}{2n} \] ### Step 3: Grouping the Terms We can group the terms in pairs: \[ \alpha(2n) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{2n-1} - \frac{1}{2n}\right) \] Each pair \( \left(\frac{1}{k} - \frac{1}{k+1}\right) \) is positive and contributes to the sum. ### Step 4: Analyzing the Limit As \( n \) increases, the series converges to \( \ln(2) \). Therefore, we can say: \[ \alpha(2n) \to \ln(2) \text{ as } n \to \infty \] ### Step 5: Establishing Bounds We know that \( \ln(2) \approx 0.693 \), which is less than 1. Hence, we can conclude that: \[ \alpha(2n) < 1 \] ### Step 6: Evaluating \( \alpha(n) \) Now we evaluate \( \alpha(n) \): - For odd \( n \), the last term is positive, and for even \( n \), the last term is negative. - Therefore, \( \alpha(n) \) oscillates but remains bounded between 0 and 1. ### Conclusion From our analysis, we can summarize: - \( \alpha(2n) < 1 \) - \( \alpha(n) \) is bounded and tends towards \( \ln(2) \), which is greater than 0.5. Thus, we can conclude: \[ \alpha(n) > \frac{1}{2} \] ### Final Result The properties of \( \alpha(n) \) lead us to the conclusion that: - \( \alpha(2n) < 1 \) - \( \alpha(n) > \frac{1}{2} \)
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+......+(1)/(2^(n)-1) Then

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

Prove that (C_(1))/(1)-(C_(2))/(2)+(C_(3))/(3)-(C_(4))/(4)+...+((-1)^(n-1))/(n)C_(n)=1+(1)/(2)+(1)/(3)+...+(1)/(n)

Let f(n)=1+(1)/(2)+(1)/(3)++(1)/(n). Then f(1)+f(2)+f(3)+f(n) is equal to (a) nf(n)-1( b) (n+1)f(n)-nn(c)(n+1)f(n)+n(d)nf(n)+n

Let S_(n)=1+(1)/(2)+(1)/(3)+….+(1)/(n) Show that ns_(n)=n+((n-1)/(1)+(n-2)/(2)+………+(2)/(n-2)+(1)/(n-1)) .

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Prove that: (1)/(2)nC_(1)-(2)/(3)nC_(2)+(3)/(4)nC_(3)-(4)/(5)nC_(4) +....+((-1)^(n+1)n)/(n+1)*nC_(n)=(1)/(n+1)

VIBRANT-TEST PAPERS-PART-II : MATHEMATICS
  1. bar(OA)=bar(i)+2bar(j)+2bar(k) .In the plane bar(OA) and bar(i) rotate...

    Text Solution

    |

  2. The solution of the differential equation x^(3)(dy)/(dx)+4x^(2) tany=e...

    Text Solution

    |

  3. The values of parameter a for which the point of minimum of the functi...

    Text Solution

    |

  4. If f(x) = a + bx + cx^(2) where c > 0 and b^(2) - 4ac < 0. Then the ar...

    Text Solution

    |

  5. If z(1),z(2),z(3) are three points lying on the circle |z|=2, then mi...

    Text Solution

    |

  6. If a in [-20,0], then the probability that the graph of the function ...

    Text Solution

    |

  7. Let f be a positive differentiable function defined on (0,oo) and phi(...

    Text Solution

    |

  8. Let f(x) = sgn (x) and g (x) = x(x^(2)-5x+6). The function f(g(x)) is ...

    Text Solution

    |

  9. Let A and B be two matrices different from identify matrix such that A...

    Text Solution

    |

  10. Let alpha(n)=1-(1)/(2)+(1)/(3)-(1)/(4)+.........+(-1)^(n-1)(1)/(n),ni...

    Text Solution

    |

  11. If veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+...

    Text Solution

    |

  12. If m is a positive integer, then [(sqrt(3)+1)^(2m)]+1, where [x] denot...

    Text Solution

    |

  13. Let A,B and I (identity matrix) be the matrices of order 4 such that A...

    Text Solution

    |

  14. Five balls b(1),b(2),b(3),b(4),b(5) are kept at random in five foxes B...

    Text Solution

    |

  15. Let A(1),A(2),A(3),.........,A(14) be a regular polygon with 14 sides ...

    Text Solution

    |

  16. If (sum(n=1)^(n=n) (n^(2)+3n+3)(n+1)!)/((n+2)!)=8, then n is equal to ...

    Text Solution

    |

  17. The number of ordered pairs (x,y) satisfying x(sin^(2)x+(1)/x^(2))=2si...

    Text Solution

    |

  18. If (.^(20)C(1))/(1)+(.^(20)C(3))/(2)+(.^(20)C(5))/(3)+.......+("^(20)C...

    Text Solution

    |

  19. If f(x) is a polynomial function satisfying f(x)f(y)=f(x)+f(y)+f(xy)-2...

    Text Solution

    |

  20. The number of points P(x,y) satisfying y^(2)(log(2)(x^(2)+1)+log((x^(2...

    Text Solution

    |