Home
Class 12
MATHS
If m is a positive integer, then [(sqrt(...

If m is a positive integer, then `[(sqrt(3)+1)^(2m)]+1`, where [x] denotes greatest integer `lex`, must be divisible by

A

`2^(m)`

B

`2^(m+1)`

C

`2^(m+2)`

D

`2^(2m)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \([( \sqrt{3} + 1)^{2m} ] + 1\), where \([x]\) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \((\sqrt{3} + 1)^{2m}\). We know that \(\sqrt{3} + 1\) is greater than 1, and thus \((\sqrt{3} + 1)^{2m}\) will be a positive integer for any positive integer \(m\). 2. **Finding the Conjugate**: We can also consider the conjugate \((\sqrt{3} - 1)^{2m}\). Since \(\sqrt{3} - 1\) is less than 1, \((\sqrt{3} - 1)^{2m}\) will be a small positive number that approaches 0 as \(m\) increases. 3. **Using the Binomial Theorem**: We can expand \((\sqrt{3} + 1)^{2m}\) using the binomial theorem: \[ (\sqrt{3} + 1)^{2m} = \sum_{k=0}^{2m} \binom{2m}{k} (\sqrt{3})^k (1)^{2m-k} \] This expansion will yield integer terms. 4. **Finding the Integer Part**: The integer part of \((\sqrt{3} + 1)^{2m}\) can be expressed as: \[ [(\sqrt{3} + 1)^{2m}] = (\sqrt{3} + 1)^{2m} + (\sqrt{3} - 1)^{2m} - 1 \] This is because the fractional part \((\sqrt{3} - 1)^{2m}\) is very small and contributes less than 1. 5. **Adding 1**: Now, we add 1 to the integer part: \[ [(\sqrt{3} + 1)^{2m}] + 1 = (\sqrt{3} + 1)^{2m} + (\sqrt{3} - 1)^{2m} \] 6. **Analyzing the Result**: The expression simplifies to: \[ (\sqrt{3} + 1)^{2m} + (\sqrt{3} - 1)^{2m} \] This is an integer since both terms are integers. 7. **Divisibility**: We need to check the divisibility of this expression. Notice that: \[ (\sqrt{3} + 1)^{2m} + (\sqrt{3} - 1)^{2m} \] can be shown to be divisible by 2 for any positive integer \(m\). ### Conclusion: Thus, we conclude that \([( \sqrt{3} + 1)^{2m} ] + 1\) must be divisible by 2.

To solve the problem, we need to analyze the expression \([( \sqrt{3} + 1)^{2m} ] + 1\), where \([x]\) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \((\sqrt{3} + 1)^{2m}\). We know that \(\sqrt{3} + 1\) is greater than 1, and thus \((\sqrt{3} + 1)^{2m}\) will be a positive integer for any positive integer \(m\). 2. **Finding the Conjugate**: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

f(x)=abs([x]x) -1lexle2 , then f(x) is (where [ast] denotes greatest integer lex )

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

Let f(x)=sin(tan^(-1)x). Then [f(-sqrt(3))] where [*] denotes the greatest integer function,is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

VIBRANT-TEST PAPERS-PART-II : MATHEMATICS
  1. bar(OA)=bar(i)+2bar(j)+2bar(k) .In the plane bar(OA) and bar(i) rotate...

    Text Solution

    |

  2. The solution of the differential equation x^(3)(dy)/(dx)+4x^(2) tany=e...

    Text Solution

    |

  3. The values of parameter a for which the point of minimum of the functi...

    Text Solution

    |

  4. If f(x) = a + bx + cx^(2) where c > 0 and b^(2) - 4ac < 0. Then the ar...

    Text Solution

    |

  5. If z(1),z(2),z(3) are three points lying on the circle |z|=2, then mi...

    Text Solution

    |

  6. If a in [-20,0], then the probability that the graph of the function ...

    Text Solution

    |

  7. Let f be a positive differentiable function defined on (0,oo) and phi(...

    Text Solution

    |

  8. Let f(x) = sgn (x) and g (x) = x(x^(2)-5x+6). The function f(g(x)) is ...

    Text Solution

    |

  9. Let A and B be two matrices different from identify matrix such that A...

    Text Solution

    |

  10. Let alpha(n)=1-(1)/(2)+(1)/(3)-(1)/(4)+.........+(-1)^(n-1)(1)/(n),ni...

    Text Solution

    |

  11. If veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+...

    Text Solution

    |

  12. If m is a positive integer, then [(sqrt(3)+1)^(2m)]+1, where [x] denot...

    Text Solution

    |

  13. Let A,B and I (identity matrix) be the matrices of order 4 such that A...

    Text Solution

    |

  14. Five balls b(1),b(2),b(3),b(4),b(5) are kept at random in five foxes B...

    Text Solution

    |

  15. Let A(1),A(2),A(3),.........,A(14) be a regular polygon with 14 sides ...

    Text Solution

    |

  16. If (sum(n=1)^(n=n) (n^(2)+3n+3)(n+1)!)/((n+2)!)=8, then n is equal to ...

    Text Solution

    |

  17. The number of ordered pairs (x,y) satisfying x(sin^(2)x+(1)/x^(2))=2si...

    Text Solution

    |

  18. If (.^(20)C(1))/(1)+(.^(20)C(3))/(2)+(.^(20)C(5))/(3)+.......+("^(20)C...

    Text Solution

    |

  19. If f(x) is a polynomial function satisfying f(x)f(y)=f(x)+f(y)+f(xy)-2...

    Text Solution

    |

  20. The number of points P(x,y) satisfying y^(2)(log(2)(x^(2)+1)+log((x^(2...

    Text Solution

    |