Home
Class 12
MATHS
If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the ...

If `3p^(2)=5p+2` and `3q^(2)=5q+2` then the equation whose roots `3p-2p` and `3q-2p` is

A

`x^(2)-5x+100=0`

B

`3x^(2)-5x-100=0`

C

`3x^(2)+5x+100=0`

D

`5x^(2)-x+7=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equation whose roots are \(3p - 2q\) and \(3q - 2p\), given the equations \(3p^2 = 5p + 2\) and \(3q^2 = 5q + 2\). ### Step 1: Solve for \(p\) and \(q\) First, we need to rearrange the equations for \(p\) and \(q\). 1. For \(p\): \[ 3p^2 - 5p - 2 = 0 \] We can use the quadratic formula \(p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ a = 3, \quad b = -5, \quad c = -2 \] \[ p = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-2)}}{2 \cdot 3} \] \[ = \frac{5 \pm \sqrt{25 + 24}}{6} = \frac{5 \pm \sqrt{49}}{6} = \frac{5 \pm 7}{6} \] This gives us: \[ p_1 = \frac{12}{6} = 2, \quad p_2 = \frac{-2}{6} = -\frac{1}{3} \] 2. For \(q\): \[ 3q^2 - 5q - 2 = 0 \] Using the quadratic formula again: \[ q = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-2)}}{2 \cdot 3} \] This gives us the same roots as for \(p\): \[ q_1 = 2, \quad q_2 = -\frac{1}{3} \] ### Step 2: Calculate the roots \(3p - 2q\) and \(3q - 2p\) Now, we need to find the roots \(3p - 2q\) and \(3q - 2p\). 1. For \(p = 2\) and \(q = 2\): \[ 3p - 2q = 3(2) - 2(2) = 6 - 4 = 2 \] \[ 3q - 2p = 3(2) - 2(2) = 6 - 4 = 2 \] 2. For \(p = 2\) and \(q = -\frac{1}{3}\): \[ 3p - 2q = 3(2) - 2\left(-\frac{1}{3}\right) = 6 + \frac{2}{3} = \frac{18}{3} + \frac{2}{3} = \frac{20}{3} \] \[ 3q - 2p = 3\left(-\frac{1}{3}\right) - 2(2) = -1 - 4 = -5 \] 3. For \(p = -\frac{1}{3}\) and \(q = 2\): \[ 3p - 2q = 3\left(-\frac{1}{3}\right) - 2(2) = -1 - 4 = -5 \] \[ 3q - 2p = 3(2) - 2\left(-\frac{1}{3}\right) = 6 + \frac{2}{3} = \frac{20}{3} \] ### Step 3: Form the equation with roots Now we have the roots: 1. \(2\) and \(2\) 2. \(\frac{20}{3}\) and \(-5\) Using the roots \(\frac{20}{3}\) and \(-5\), we can find the equation. The sum of the roots: \[ \alpha + \beta = \frac{20}{3} + (-5) = \frac{20}{3} - \frac{15}{3} = \frac{5}{3} \] The product of the roots: \[ \alpha \beta = \frac{20}{3} \cdot (-5) = -\frac{100}{3} \] Using the standard form of a quadratic equation \(x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0\): \[ x^2 - \frac{5}{3}x - \frac{100}{3} = 0 \] Multiplying through by 3 to eliminate the fractions: \[ 3x^2 - 5x - 100 = 0 \] ### Final Answer The equation whose roots are \(3p - 2q\) and \(3q - 2p\) is: \[ \boxed{3x^2 - 5x - 100 = 0} \]

To solve the problem, we need to find the equation whose roots are \(3p - 2q\) and \(3q - 2p\), given the equations \(3p^2 = 5p + 2\) and \(3q^2 = 5q + 2\). ### Step 1: Solve for \(p\) and \(q\) First, we need to rearrange the equations for \(p\) and \(q\). 1. For \(p\): \[ ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

If 3p^(2)=5p+2 and 3q^(2)=5q+2 where p!=q,pq is equal to

If x^(2)+px+q=0 is the quadratic equation whose roots are a-2 and b-2 where a and b are the roots of x^(2)-3x+1=0, then p-1,q=5 b.p=1,1=-5 c.p=-1,q=1 d.p=1,q=-1

I. p^(2)+5p+6 = 0 II. q^(2) + 3q + 2 = 0

if 2^(p)+3^(q)=17 and 2^(p+2)-3^(q+1)=5 then find the value of p&q

If p and q are roots of the equation 2x^2-7x+3 then p^2+q^2=

If 2p + 3q = 12 and 4p^(2) + 4pq - 3q^(2) = 126 , then what is the value of p + 2q ?

If (2p+5q)/(2r+5s) = (4p-3q)/(4r-3s) , then find the relation between p, q, r and s.

I. 3p^(2)+10p+8 = 0 II. 2q^(2) + 3q+1 = 0

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  2. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  3. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  4. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  5. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  6. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  7. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  8. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  9. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  10. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  11. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  12. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  13. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  14. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  15. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  16. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  17. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  18. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  19. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  20. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |