Home
Class 12
MATHS
If |w|=2, then the set of points x+iy=w-...

If `|w|=2`, then the set of points `x+iy=w-(1)/(w)` lie on

A

Circle

B

Ellipse

C

Parabola

D

Hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \( x + iy = w - \frac{1}{w} \) given that \( |w| = 2 \). ### Step-by-Step Solution: 1. **Understanding the modulus condition**: Since \( |w| = 2 \), we know that \( w \) can be expressed as \( w = 2e^{i\theta} \) for some angle \( \theta \). This means \( w \) lies on a circle of radius 2 in the complex plane. 2. **Expressing \( w \)**: Let \( w = 2(\cos \theta + i \sin \theta) \). Then, we can write: \[ w = 2\cos \theta + 2i\sin \theta \] 3. **Finding \( \frac{1}{w} \)**: We need to find \( \frac{1}{w} \): \[ \frac{1}{w} = \frac{1}{2(\cos \theta + i \sin \theta)} = \frac{1}{2} \cdot \frac{\cos \theta - i \sin \theta}{\cos^2 \theta + \sin^2 \theta} = \frac{1}{2}(\cos \theta - i \sin \theta) \] 4. **Calculating \( w - \frac{1}{w} \)**: Now we can compute \( w - \frac{1}{w} \): \[ w - \frac{1}{w} = \left( 2\cos \theta + 2i\sin \theta \right) - \left( \frac{1}{2}(\cos \theta - i \sin \theta) \right) \] Simplifying this gives: \[ = 2\cos \theta + 2i\sin \theta - \frac{1}{2}\cos \theta + \frac{1}{2}i\sin \theta \] \[ = \left( 2\cos \theta - \frac{1}{2}\cos \theta \right) + \left( 2i\sin \theta + \frac{1}{2}i\sin \theta \right) \] \[ = \frac{4}{2}\cos \theta - \frac{1}{2}\cos \theta + \left( \frac{4}{2}i\sin \theta + \frac{1}{2}i\sin \theta \right) \] \[ = \frac{3}{2}\cos \theta + \frac{5}{2}i\sin \theta \] 5. **Identifying \( x \) and \( y \)**: From the above expression, we can identify: \[ x = \frac{3}{2}\cos \theta, \quad y = \frac{5}{2}\sin \theta \] 6. **Finding the relationship between \( x \) and \( y \)**: To find the relationship between \( x \) and \( y \), we can use the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \left( \frac{2x}{3} \right)^2 + \left( \frac{2y}{5} \right)^2 = 1 \] Simplifying this gives: \[ \frac{4x^2}{9} + \frac{4y^2}{25} = 1 \] Multiplying through by 225 (the least common multiple of 9 and 25): \[ 100x^2 + 36y^2 = 225 \] 7. **Final equation**: The equation \( 100x^2 + 36y^2 = 225 \) represents an ellipse. ### Conclusion: The set of points \( x + iy = w - \frac{1}{w} \) lies on an ellipse.
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

If |w|=1, then set of points z=w+(1)/(w) is contained in or equal to

If |omega|=2 , then the set of points z=omega-1/omega is contained in or equal to the set of points z satisfying

If |omega|=1 , then the set of points z=omega+1/omega is contained in or equal to the set of points z satisfying.

Consider a complex number z=(2w+1)/(iw+1) where w=x+iy if I_(m)(z)=-2 then the locus of omega is a straight line.Find the x- intercept of the line

If 1,w,w^(2) are the cube roots of unity then (1)/(1+w^2)+(2)/(1+w)-(3)/(w^2+w)=

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0 are -1,1+2 omega,1+2 omega^(2) b.-1,1-2 omega,1-2 omega^(2) c.-1,-1,-1 d.none of these

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0 are : (a)-1,1+2w,1+2w^(2)(b)-1,1-2w,1-2w^(2)(b)1,w,w^(2)

If w is a complex cube root of unity, then the value of the determinant Delta = [(1,w,w^(2)),(w,w^(2),1),(w^(2),1,w)] , is

Let z=x+iy and w=u+iv be two complex numbers, such that |z|=|w|=1 and z^(2)+w^(2)=1. Then, the number of ordered pairs (z, w) is equal to (where, x, y, u, v in R and i^(2)=-1 )

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  2. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  3. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  4. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  5. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  6. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  7. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  8. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  9. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  10. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  11. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |

  12. A committee consisting of atleast three members is to be formed from a...

    Text Solution

    |

  13. The number of ways in which 20 letters a(1),a(2),a(3),.............,a(...

    Text Solution

    |

  14. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+.........+a(16)x^(18)AAx " the...

    Text Solution

    |

  15. The sum of the rational terms in the binomial expansion of (2^((1)/(2)...

    Text Solution

    |

  16. A biased coin with probability p(0ltplt1) of getting heads, is tossed ...

    Text Solution

    |

  17. A lottery sells n^(2) tickets and declares n prizes. If a man purchase...

    Text Solution

    |

  18. If x,y in (0,30) such that [(x)/(3)]+[(3x)/(2)]+[(y)/(2)]+[(3y)/(4)]=(...

    Text Solution

    |

  19. If the 6th term in the expansion of ((1)/(x^(8//3))+x^(2)log(10)x)^(8)...

    Text Solution

    |

  20. For nge 2, " let "a(n)=Sigma(r=0)^(n) (1)/(C(r)^(2)), then value of b...

    Text Solution

    |