Home
Class 12
MATHS
Let A be a 3xx3 matrix such that A [(1,2...

Let A be a `3xx3` matrix such that A `[(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)]`, then `A^(-1)` is :

A

`[(3,1,2),(3,0,2),(1,0,1)]`

B

`[(3,2,1),(3,2,0),(1,1,0)]`

C

`[(0,1,3),(0,2,3),(2,1,1)]`

D

`[(1,2,3),(0,1,1),(0,2,3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) given that \( A \cdot B = I \), where \( B \) is the matrix \( \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} \) and \( I \) is the identity matrix \( \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \), we can follow these steps: ### Step 1: Set up the equation We have the equation: \[ A \cdot B = I \] This can be rearranged to find \( A \): \[ A = I \cdot B^{-1} \] ### Step 2: Find the inverse of matrix \( B \) To find \( A^{-1} \), we need to compute \( B^{-1} \). We can use the formula for the inverse of a \( 3 \times 3 \) matrix, which is given by: \[ B^{-1} = \frac{1}{\text{det}(B)} \cdot \text{adj}(B) \] where \( \text{det}(B) \) is the determinant of \( B \) and \( \text{adj}(B) \) is the adjugate of \( B \). ### Step 3: Calculate the determinant of \( B \) The determinant of matrix \( B \) is calculated as follows: \[ B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(B) = 1 \cdot (2 \cdot 1 - 3 \cdot 1) - 2 \cdot (0 \cdot 1 - 3 \cdot 0) + 3 \cdot (0 \cdot 1 - 2 \cdot 0) = 1 \cdot (-1) = -1 \] ### Step 4: Calculate the adjugate of \( B \) To find the adjugate, we need to calculate the cofactor matrix and then transpose it. The cofactor matrix is calculated as follows: \[ \text{Cofactor}(B) = \begin{pmatrix} \text{det}(M_{11}) & -\text{det}(M_{12}) & \text{det}(M_{13}) \\ -\text{det}(M_{21}) & \text{det}(M_{22}) & -\text{det}(M_{23}) \\ \text{det}(M_{31}) & -\text{det}(M_{32}) & \text{det}(M_{33}) \end{pmatrix} \] where \( M_{ij} \) is the minor matrix obtained by deleting the \( i \)-th row and \( j \)-th column. Calculating the cofactors: - \( \text{det}(M_{11}) = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = 2 - 3 = -1 \) - \( \text{det}(M_{12}) = \text{det} \begin{pmatrix} 0 & 3 \\ 0 & 1 \end{pmatrix} = 0 \) - \( \text{det}(M_{13}) = \text{det} \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = 0 \) - \( \text{det}(M_{21}) = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = -1 \) - \( \text{det}(M_{22}) = \text{det} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = 1 \) - \( \text{det}(M_{23}) = \text{det} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 0 \) - \( \text{det}(M_{31}) = \text{det} \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix} = 0 \) - \( \text{det}(M_{32}) = \text{det} \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} = 2 \) - \( \text{det}(M_{33}) = \text{det} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} = 2 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(B) = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -2 & 2 \end{pmatrix} \] Transposing gives us the adjugate: \[ \text{adj}(B) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 5: Calculate \( B^{-1} \) Now we can find \( B^{-1} \): \[ B^{-1} = \frac{1}{-1} \cdot \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{pmatrix} \] ### Step 6: Find \( A^{-1} \) Since \( A = B^{-1} \), we have: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{pmatrix} \]

To find the inverse of the matrix \( A \) given that \( A \cdot B = I \), where \( B \) is the matrix \( \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} \) and \( I \) is the identity matrix \( \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \), we can follow these steps: ### Step 1: Set up the equation We have the equation: \[ A \cdot B = I \] This can be rearranged to find \( A \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

" Let "A" be a "3times3" matrix such that "A[[1,2,3],[0,2,3],[0,1,1]]=[[0,0,1],[1,0,0],[0,1,0]]" .Then "A^(-1)" is "

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  2. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  3. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  4. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  5. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  6. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  7. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |

  8. A committee consisting of atleast three members is to be formed from a...

    Text Solution

    |

  9. The number of ways in which 20 letters a(1),a(2),a(3),.............,a(...

    Text Solution

    |

  10. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+.........+a(16)x^(18)AAx " the...

    Text Solution

    |

  11. The sum of the rational terms in the binomial expansion of (2^((1)/(2)...

    Text Solution

    |

  12. A biased coin with probability p(0ltplt1) of getting heads, is tossed ...

    Text Solution

    |

  13. A lottery sells n^(2) tickets and declares n prizes. If a man purchase...

    Text Solution

    |

  14. If x,y in (0,30) such that [(x)/(3)]+[(3x)/(2)]+[(y)/(2)]+[(3y)/(4)]=(...

    Text Solution

    |

  15. If the 6th term in the expansion of ((1)/(x^(8//3))+x^(2)log(10)x)^(8)...

    Text Solution

    |

  16. For nge 2, " let "a(n)=Sigma(r=0)^(n) (1)/(C(r)^(2)), then value of b...

    Text Solution

    |

  17. Fig. 24.8 shows three events A, B and C. Probabilities of different ev...

    Text Solution

    |

  18. Chords AB and CD of parabola y^(2)=8x intersect at E(2,0). Tangents at...

    Text Solution

    |

  19. Tangents PA and PB to the director circle of circle x^(2)+y^(2)-2x-4y...

    Text Solution

    |

  20. The combined equation of bisectors of lines y = m(1) x " and " y=m(2)...

    Text Solution

    |