Home
Class 12
MATHS
If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+...

If `(1+x+x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+.........+a_(16)x^(18)AAx " then "a_(5)`, is equal to……….

A

502

B

504

C

506

D

508

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient \( a_5 \) in the expansion of \( (1 + x + x^2)^8 \), we can use the multinomial expansion. ### Step-by-Step Solution: 1. **Understanding the General Term**: The general term in the expansion of \( (1 + x + x^2)^n \) can be expressed as: \[ T = \frac{n!}{a! b! c!} (1)^a (x)^b (x^2)^c \] where \( a + b + c = n \) and \( b + 2c \) gives the power of \( x \) in the term. 2. **Setting Up the Equation**: For our case, \( n = 8 \), we need to find the coefficient of \( x^5 \). Therefore, we need: \[ b + 2c = 5 \] and \[ a + b + c = 8 \] 3. **Finding Possible Values**: From the equations: - From \( a + b + c = 8 \), we can express \( a \) as: \[ a = 8 - b - c \] - Substituting this into the first equation gives: \[ 8 - b - c + b + 2c = 8 \implies c = 5 - b \] Now we can substitute \( c \) back into the equation \( a + b + c = 8 \): \[ a + b + (5 - b) = 8 \implies a + 5 = 8 \implies a = 3 \] Now we can find possible values for \( b \) and \( c \): - If \( b = 1 \), then \( c = 4 \) (valid) - If \( b = 3 \), then \( c = 2 \) (valid) - If \( b = 5 \), then \( c = 0 \) (valid) Thus, the valid combinations are: 1. \( (a, b, c) = (3, 1, 4) \) 2. \( (a, b, c) = (3, 3, 2) \) 3. \( (a, b, c) = (3, 5, 0) \) 4. **Calculating the Coefficients**: Now we calculate the coefficients for each valid combination. - For \( (3, 1, 4) \): \[ T_1 = \frac{8!}{3! 1! 4!} = \frac{40320}{6 \cdot 1 \cdot 24} = \frac{40320}{144} = 280 \] - For \( (3, 3, 2) \): \[ T_2 = \frac{8!}{3! 3! 2!} = \frac{40320}{6 \cdot 6 \cdot 2} = \frac{40320}{72} = 560 \] - For \( (3, 5, 0) \): \[ T_3 = \frac{8!}{3! 5! 0!} = \frac{40320}{6 \cdot 120 \cdot 1} = \frac{40320}{720} = 56 \] 5. **Summing the Coefficients**: Finally, we sum the coefficients: \[ a_5 = T_1 + T_2 + T_3 = 280 + 560 + 56 = 896 \] ### Final Answer: Thus, the coefficient \( a_5 \) is equal to \( 896 \).

To find the coefficient \( a_5 \) in the expansion of \( (1 + x + x^2)^8 \), we can use the multinomial expansion. ### Step-by-Step Solution: 1. **Understanding the General Term**: The general term in the expansion of \( (1 + x + x^2)^n \) can be expressed as: \[ T = \frac{n!}{a! b! c!} (1)^a (x)^b (x^2)^c ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)

(1+x+x^(2)+x^(3))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(15)x^(15), then a_(10) equals to

If (1+x+x^(2)+x^(3))^(100)=a_(0)+a_(1)+a_(2)x^(2)+......+a_(300)x^(300) then

If (1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20) , then

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……+a_(20)x^(20) , then a_(1) equals :

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1+x+x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(16)x^(16) for all values of x, then (a_(5))/(100) is equal to

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. A committee consisting of atleast three members is to be formed from a...

    Text Solution

    |

  2. The number of ways in which 20 letters a(1),a(2),a(3),.............,a(...

    Text Solution

    |

  3. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+.........+a(16)x^(18)AAx " the...

    Text Solution

    |

  4. The sum of the rational terms in the binomial expansion of (2^((1)/(2)...

    Text Solution

    |

  5. A biased coin with probability p(0ltplt1) of getting heads, is tossed ...

    Text Solution

    |

  6. A lottery sells n^(2) tickets and declares n prizes. If a man purchase...

    Text Solution

    |

  7. If x,y in (0,30) such that [(x)/(3)]+[(3x)/(2)]+[(y)/(2)]+[(3y)/(4)]=(...

    Text Solution

    |

  8. If the 6th term in the expansion of ((1)/(x^(8//3))+x^(2)log(10)x)^(8)...

    Text Solution

    |

  9. For nge 2, " let "a(n)=Sigma(r=0)^(n) (1)/(C(r)^(2)), then value of b...

    Text Solution

    |

  10. Fig. 24.8 shows three events A, B and C. Probabilities of different ev...

    Text Solution

    |

  11. Chords AB and CD of parabola y^(2)=8x intersect at E(2,0). Tangents at...

    Text Solution

    |

  12. Tangents PA and PB to the director circle of circle x^(2)+y^(2)-2x-4y...

    Text Solution

    |

  13. The combined equation of bisectors of lines y = m(1) x " and " y=m(2)...

    Text Solution

    |

  14. The locus of a moving point 'P' which divides AB internally in the rat...

    Text Solution

    |

  15. The equation of the circle touching the lines |y| = x and having radiu...

    Text Solution

    |

  16. The area (in square units ) of the triangle formed by y-axis , the str...

    Text Solution

    |

  17. A variable straight line passes through the points of intersection of ...

    Text Solution

    |

  18. The locus of a point which moves such that the difference of the squar...

    Text Solution

    |

  19. Angle between the tangents drawn to parabola y^(2)+4a^(2)-4ax=0, from ...

    Text Solution

    |

  20. Equation of a common tangent to x^(2)+y^(2)=16" and "9x^(2)+25y^(2)=22...

    Text Solution

    |