Home
Class 12
MATHS
If x,y in (0,30) such that [(x)/(3)]+[(3...

If `x,y in (0,30)` such that `[(x)/(3)]+[(3x)/(2)]+[(y)/(2)]+[(3y)/(4)]=(11)/(6)x+(5)/(4)y`
(where [x] denotes greatest integer `le x`), then number of ordered pairs (x,y) is

A

0

B

2

C

4

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \left\lfloor \frac{x}{3} \right\rfloor + \left\lfloor \frac{3x}{2} \right\rfloor + \left\lfloor \frac{y}{2} \right\rfloor + \left\lfloor \frac{3y}{4} \right\rfloor = \frac{11}{6}x + \frac{5}{4}y \] where \( x, y \in (0, 30) \), we will analyze the left-hand side and right-hand side separately. ### Step 1: Analyze the greatest integer functions The greatest integer function \( \left\lfloor z \right\rfloor \) gives the largest integer less than or equal to \( z \). We can express the left-hand side in terms of \( x \) and \( y \): 1. \( \left\lfloor \frac{x}{3} \right\rfloor \) can be written as \( \frac{x}{3} - \{ \frac{x}{3} \} \) 2. \( \left\lfloor \frac{3x}{2} \right\rfloor \) can be written as \( \frac{3x}{2} - \{ \frac{3x}{2} \} \) 3. \( \left\lfloor \frac{y}{2} \right\rfloor \) can be written as \( \frac{y}{2} - \{ \frac{y}{2} \} \) 4. \( \left\lfloor \frac{3y}{4} \right\rfloor \) can be written as \( \frac{3y}{4} - \{ \frac{3y}{4} \} \) Combining these, we have: \[ \left( \frac{x}{3} + \frac{3x}{2} + \frac{y}{2} + \frac{3y}{4} \right) - \left( \{ \frac{x}{3} \} + \{ \frac{3x}{2} \} + \{ \frac{y}{2} \} + \{ \frac{3y}{4} \} \right) \] ### Step 2: Simplify the left-hand side Now we simplify the non-integer part: \[ \frac{x}{3} + \frac{3x}{2} = \frac{2x + 9x}{6} = \frac{11x}{6} \] \[ \frac{y}{2} + \frac{3y}{4} = \frac{2y + 3y}{4} = \frac{5y}{4} \] Thus, the left-hand side becomes: \[ \frac{11x}{6} + \frac{5y}{4} - \left( \{ \frac{x}{3} \} + \{ \frac{3x}{2} \} + \{ \frac{y}{2} \} + \{ \frac{3y}{4} \} \right) \] ### Step 3: Set the equation Setting the left-hand side equal to the right-hand side gives: \[ \frac{11x}{6} + \frac{5y}{4} - \left( \{ \frac{x}{3} \} + \{ \frac{3x}{2} \} + \{ \frac{y}{2} \} + \{ \frac{3y}{4} \} \right) = \frac{11}{6}x + \frac{5}{4}y \] This implies: \[ - \left( \{ \frac{x}{3} \} + \{ \frac{3x}{2} \} + \{ \frac{y}{2} \} + \{ \frac{3y}{4} \} \right) = 0 \] ### Step 4: Determine conditions for \( x \) and \( y \) For the equation to hold true, each fractional part must equal zero: 1. \( \{ \frac{x}{3} \} = 0 \) implies \( x \) is a multiple of 3. 2. \( \{ \frac{3x}{2} \} = 0 \) implies \( x \) is a multiple of 2. 3. \( \{ \frac{y}{2} \} = 0 \) implies \( y \) is a multiple of 2. 4. \( \{ \frac{3y}{4} \} = 0 \) implies \( y \) is a multiple of 4. Thus, \( x \) must be a multiple of 6 (LCM of 2 and 3) and \( y \) must be a multiple of 4. ### Step 5: Find valid multiples within the range - For \( x \): The multiples of 6 in the range \( (0, 30) \) are \( 6, 12, 18, 24, 30 \) (5 values). - For \( y \): The multiples of 4 in the range \( (0, 30) \) are \( 4, 8, 12, 16, 20, 24, 28 \) (7 values). ### Step 6: Calculate the number of ordered pairs The total number of ordered pairs \( (x, y) \) is given by the product of the number of valid \( x \) values and \( y \) values: \[ \text{Total pairs} = 5 \times 7 = 35 \] ### Final Answer The number of ordered pairs \( (x, y) \) is \( \boxed{35} \). ---

To solve the equation \[ \left\lfloor \frac{x}{3} \right\rfloor + \left\lfloor \frac{3x}{2} \right\rfloor + \left\lfloor \frac{y}{2} \right\rfloor + \left\lfloor \frac{3y}{4} \right\rfloor = \frac{11}{6}x + \frac{5}{4}y \] where \( x, y \in (0, 30) \), we will analyze the left-hand side and right-hand side separately. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos

Similar Questions

Explore conceptually related problems

If 0

If x,y in (0,30) such that [x/3]+[(3pi)/2]+[y/2]+[(3pi)/4]=11/6x+5/4 y (where {x} denotes greatest integer <=x ) number of ordered pairs (x, y) is (A) 0 (B) 2 (C) 4 (D) none of these

The area enclosed by [(|3x+4y|)/(5)]+[(|4x-3y|)/(5)]=3 is (where [.] denotes the greatest integer function)

If 2|x| - |y| = 3 and 4|x| + |y| = 3 , then number of possible ordered pairs of the form (x,y) is

If x lt 4 " and " x, y in {1, 2, 3, .., 10} , then find the number of ordered pairs (x,y).

If y=3[x]+5 and y=2[x-1]+9 then value of [x+y] is (where [.] denotes greatest integer function)

lim_(x rarr0)[min(y^(2)-4y+11)(sin x)/(x)](where[.] denotes the greatest integer function is 5(b)6(c)7(d) does not exist

(x-4)(x-3)=(x-6)(x-5) (y-9)(y-3)= (y-4)(y-3)

The area enclosed by the curve [x+3y]=[x-2] where x in [3,4] is : (where[.] denotes greatest integer function)

If (x-1)^2+(y-2)^2=0 , where x and y are integers, then the value of 2x+3y is :

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. A biased coin with probability p(0ltplt1) of getting heads, is tossed ...

    Text Solution

    |

  2. A lottery sells n^(2) tickets and declares n prizes. If a man purchase...

    Text Solution

    |

  3. If x,y in (0,30) such that [(x)/(3)]+[(3x)/(2)]+[(y)/(2)]+[(3y)/(4)]=(...

    Text Solution

    |

  4. If the 6th term in the expansion of ((1)/(x^(8//3))+x^(2)log(10)x)^(8)...

    Text Solution

    |

  5. For nge 2, " let "a(n)=Sigma(r=0)^(n) (1)/(C(r)^(2)), then value of b...

    Text Solution

    |

  6. Fig. 24.8 shows three events A, B and C. Probabilities of different ev...

    Text Solution

    |

  7. Chords AB and CD of parabola y^(2)=8x intersect at E(2,0). Tangents at...

    Text Solution

    |

  8. Tangents PA and PB to the director circle of circle x^(2)+y^(2)-2x-4y...

    Text Solution

    |

  9. The combined equation of bisectors of lines y = m(1) x " and " y=m(2)...

    Text Solution

    |

  10. The locus of a moving point 'P' which divides AB internally in the rat...

    Text Solution

    |

  11. The equation of the circle touching the lines |y| = x and having radiu...

    Text Solution

    |

  12. The area (in square units ) of the triangle formed by y-axis , the str...

    Text Solution

    |

  13. A variable straight line passes through the points of intersection of ...

    Text Solution

    |

  14. The locus of a point which moves such that the difference of the squar...

    Text Solution

    |

  15. Angle between the tangents drawn to parabola y^(2)+4a^(2)-4ax=0, from ...

    Text Solution

    |

  16. Equation of a common tangent to x^(2)+y^(2)=16" and "9x^(2)+25y^(2)=22...

    Text Solution

    |

  17. If y=ax^(2)+bx+c is the reflection of parabola y=x^(2)-4x+1 about the ...

    Text Solution

    |

  18. The locus of a moving point so that tangents from it to circle x^(2)+y...

    Text Solution

    |

  19. Locus of a point that divides a chord having slope 4 hyperbola xy=1 in...

    Text Solution

    |

  20. The chords of contact of a point with respect to a hyperbola and its a...

    Text Solution

    |