Home
Class 12
MATHS
Which of the following is an odd functio...

Which of the following is an odd function?
I. `f(x)=3x^(3)+5`
II. `g(x)=4x^(6)+2x^(4)-3x^(2)`
III. `h(x)=7x^(5)-8x^(3)+12x`

A

only I

B

only II

C

only III

D

only I and II

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given functions is an odd function, we will use the property of odd functions: a function \( f(x) \) is odd if \( f(-x) = -f(x) \). ### Step-by-Step Solution: 1. **Check the first function: \( f(x) = 3x^3 + 5 \)** - Calculate \( f(-x) \): \[ f(-x) = 3(-x)^3 + 5 = 3(-x^3) + 5 = -3x^3 + 5 \] - Calculate \( -f(x) \): \[ -f(x) = -(3x^3 + 5) = -3x^3 - 5 \] - Compare \( f(-x) \) and \( -f(x) \): \[ f(-x) = -3x^3 + 5 \quad \text{and} \quad -f(x) = -3x^3 - 5 \] Since \( f(-x) \neq -f(x) \), \( f(x) \) is **not an odd function**. 2. **Check the second function: \( g(x) = 4x^6 + 2x^4 - 3x^2 \)** - Calculate \( g(-x) \): \[ g(-x) = 4(-x)^6 + 2(-x)^4 - 3(-x)^2 = 4x^6 + 2x^4 - 3x^2 \] (All powers are even, so they remain positive.) - Calculate \( -g(x) \): \[ -g(x) = -(4x^6 + 2x^4 - 3x^2) = -4x^6 - 2x^4 + 3x^2 \] - Compare \( g(-x) \) and \( -g(x) \): \[ g(-x) = 4x^6 + 2x^4 - 3x^2 \quad \text{and} \quad -g(x) = -4x^6 - 2x^4 + 3x^2 \] Since \( g(-x) \neq -g(x) \), \( g(x) \) is **not an odd function**. 3. **Check the third function: \( h(x) = 7x^5 - 8x^3 + 12x \)** - Calculate \( h(-x) \): \[ h(-x) = 7(-x)^5 - 8(-x)^3 + 12(-x) = -7x^5 + 8x^3 - 12x \] - Calculate \( -h(x) \): \[ -h(x) = -(7x^5 - 8x^3 + 12x) = -7x^5 + 8x^3 - 12x \] - Compare \( h(-x) \) and \( -h(x) \): \[ h(-x) = -7x^5 + 8x^3 - 12x \quad \text{and} \quad -h(x) = -7x^5 + 8x^3 - 12x \] Since \( h(-x) = -h(x) \), \( h(x) \) is an **odd function**. ### Conclusion: The only odd function among the given options is **III. \( h(x) = 7x^5 - 8x^3 + 12x \)**.

To determine which of the given functions is an odd function, we will use the property of odd functions: a function \( f(x) \) is odd if \( f(-x) = -f(x) \). ### Step-by-Step Solution: 1. **Check the first function: \( f(x) = 3x^3 + 5 \)** - Calculate \( f(-x) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • HIGHER DEGREE POLYNOMIALS

    ENGLISH SAT|Exercise EXERCISES|6 Videos
  • HEART OF ALGEBRA

    ENGLISH SAT|Exercise PRACTICE TEST|14 Videos
  • IMPROVING YOUR MATH SCORE

    ENGLISH SAT|Exercise VERY CHALLENGING PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Which of the following statements includes a function divisible by 2x+1? I. f(x)=8x^(2)-2 II. g(x)=2x^(2)-9x+4 III. h(x)=4x^(3)+2x^(2)-6x-3

If f(x)=x^(3) and g(x)=x^(2)+1 , which of the following is an odd functionn (are odd functions)? I. f(x)*g(x) II. f(g(x)) III. g(f(x))

If f(x) is a real valued function, then which of the following is injective function ? (i) f(x) = x^(5) (ii) f(x) = x + sin x (iii) f(x) = x^(2) (iv) f(x) = e^(x) (v) f(x) = x^(3) + x^(2) + 4x + 4

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is

Which of the following are quadratic equations? 3x^2-5x+9=x^2-7x+3 (ii) x+1/x=1 (iii) x^2-3x=0

Differentiate the following functions: 12. 8x^(3) - x^(2) + 5 - (2)/( x ) + (4)/( x^3) .

Which of the following are quadratic equations? (i) x^(2)8x+12=0 (ii) x+(1)/(x)=5 (iii) x+(5)/(x)=x^(2) (iv) x^(2)-5sqrtx+7=0 (v) x^(2)-5x-sqrtx+4=0 (vi) x^(2)-(1)/(x^(2))=4 (vii) 5x^(2)-7x=3x^(2)-7x+3 (viii) (1)/(4)x^(2)+(7)/(6)x-2=0

Find the values of x for which the following functions are maximum or minimum: (i) x^(3)- 3x^(2) - 9x (ii) 4x^(3)-15x^(2)+12x+1

Find the derivative of the following function with respect to 'X' (i) x^(4) (ii) x^(-3) (iii) 3x^(2)

Without solving, find the nature of the roots of the following equations: (i) 3x^(2)-7x+5=0 . (ii) 4x^(2)+4x+1=0 . (iii) 3x^(2)+7x+2=0 . (iv) x^(2)+px-q^(2)=0 .