Home
Class 8
MATHS
Resolve each of the following quadratic ...

Resolve each of the following quadratic trinomials into factors:
(1) `2x^2+5x+3`
(2) `2x^2-3x-2`
(3) `3x^2+10 x+3`
(4) `7x-6-2x^2`

Text Solution

Verified by Experts

By using mid-term splitting:
(1) `2x^2+5x+3`
`=2x^2+2x+3x+3`
`= 2x(x+1)+3(x+1)`
`=(2x+3)(x+1)`

(2) `2x^2−3x−2`
`=2x^2−4x+x−2`
`=2x(x−2)+1(x−2)`
`=(x−2)(2x+1)`

(3) `3x^2+10x+3`
`=3x^2+9x+x+3`
`=3x(x+3)+1(x+3)`
`=(3x+1)(x+3)`

(4) `7x-6-2x^2`
`=-2x^2+7x-6`
`=-2x^2+4x+3x–6`
`=-2x(x–2)+3(x–2)`
`=(x–2)(3–2x)`
Promotional Banner

Topper's Solved these Questions

  • DIVISION OF ALGEBRAIC EXPRESSIONS

    RD SHARMA|Exercise All Questions|61 Videos
  • INTRODUCTION TO GRAPHS

    RD SHARMA|Exercise All Questions|31 Videos

Similar Questions

Explore conceptually related problems

Resolve each of the following quadratic trinomials into factors: 7x^(2)-19x-6(2)28-31x-5x^(2)3+23y-8y^(2)(4)11x^(2)-54x+63

Resolve each of the following quadratic trinomials into factors: 7x-6x^(2)+20(2)3x^(2)+22x+3512x^(2)-17xy+6y^(2)(4)6x^(2)-5xy-6y^(2)

Solve each of the following quadratic equations: ((4x-3)/(2x+1))-10((2x+1)/(4x-3))=3,xne(-1)/(2),(3)/(4)

Factorise: (i) 12 x^2-7x+1 (ii) 2x^2+7x+3 (iii) 6x^2+5x-6 (iv) 3x^2-x-4

Which of the following are quadratic equations? 3x^(2)-5x+9=x^(2)-7x+3 (ii) x+(1)/(x)=1( iii) x^(2)-3x=0

Find each of the following products : (2x^(2) + 3x - 7) xx (3x^(2) - 5x + 4)

Which of the following quadratic expression can be expressed as a product of real linear factors? (a) x^(2)-2x+3 (b) 3x^(2)-sqrt2x-sqrt3 (c) 2x^(2)+3x-4 (d) sqrt2x^(2)-sqrt5x+3

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3

Find a common factor of the quadratic polynomials 3x^(2)-x-10 and 2x^(2)-x-6 .