Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that:`|[b+c, q+r, y+z],[ c+a, r+p, z+x],[ a+b, p+q, x+y]|=2|[a, p, x],[ b, q ,y],[ c, r, z]|`

Text Solution

Verified by Experts

`L.H.S. = |[b+c,q+r,y+z],[c+A,r+p,z+x],[a+b,p+q,x+y]|`
Applying `R_1->R_1+R_2+R_3`
`= |[2(a+b+c),2(p+q+r),2(x+y+z)],[c+a,r+p,z+x],[a+b,p+q,x+y]|`
`= 2|[a+b+c,p+q+r,x+y+z],[c+a,r+p,z+x],[a+b,p+q,x+y]|`
Applying `R_2->R_2-R_1` and `R_3->R_3-R_1`
`=2|[a+b+c,p+q+r,x+y+z],[-b,-q,-y],[-c,-r,-z]|`
Applying `R_1->R_1+R_2+R_3`
`=2|[a,p,x],[-b,-q,-y],[-c,-r,-z]|`
...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.5|18 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Use the properties of determinant and without expanding prove that |{:(b+c,q+r,y+z),(c+a,r+p,z+x),(a+b,p+q,x+y):}| = 2 |{:(a,p,x),(b,q,y),(c,r,z):}| .

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Prove that: |[b+c, c+a, a+b],[q+r, r+p, p+q],[y+z, z+x, x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Without expansion, prove the following: |(a+b, b+c, c+a),(p+q, q+r, r+ p),(x+y, y+z, z+x)|=2|(a,b,c),(p,q,r),(x,y,z)|

Without expanding, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z|

Let a determinant is given by A=det[[a,b,cp,q,rx,y,z]]B=det[[p+x,q+y,r+za+x,b+y,c+za+p,b+q,c+r]] then