Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:
(i) `|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a)`
(ii) `|[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)`

Text Solution

Verified by Experts

(i) `L.H.S.= |[1,a,a^2],[1,b,b^2],[1,c,c^2]|`
Applying `R_1->R_1-R_2` and `R_2->R_2-R_3`
`= |[0,a-b,a^2-b^2],[0,b-c,b^2 - c^2],[1,c,c^2]|`
`= |[0,a-b,(a-b)(a+b)],[0,b-c,(b-c)(b+c)],[1,c,c^2]|`
`= (a-b)(b-c)|[0,1,(a+b)],[0,1,(b+c)],[1,c,c^2]|`
`= (a-b)(b-c)[b+c-a-b]`
`= (a-b)(b-c)(c-a) = R.H.S.`

...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.5|18 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinant show that: det[[1,a,-bc1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)det[[1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)

Prove that |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)

Show without expanding that |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=|[1,b c, b+c],[1,c a, c+a],[1,a b, a+b]|

Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)