Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:
(i) `|[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3`
(ii) `|[x+y+2z, x, y],[ z, y+z+2x, y],[ z, x, z+x+2y]|=2(x+y+z)^3`

Text Solution

Verified by Experts

(i) `L.H.S. = |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|`
Applying `R_1->R_1+R_2+R_3`
`=|[a+b+c,a+b+c,a+b+c],[2b,b-c-a,2b],[2c,2c,c-a-b]|`
`=(a+b+c)|[1,1,1],[2b,b-c-a,2b],[2c,2c,c-a-b]|`
Applying `C_2->C_2-C_1 and C_3->C_3-C_1`
`=(a+b+c)|[1,0,0],[2b,-(a+b+c),0],[2c,0,-(a+b+c)]|`
`=(a+b+c)(-(a+b+c))(-(a+b+c))|[1,0,0],[2b,1,0],[2c,0,1]|`
`=(a+b+c)^3[1(1-0)-0+0]`
...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.5|18 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Show that |{:(x,y,z),(2x+2a,2y+2b,2z+2c),(a,b,c):}|=0

Show that |a b c a+2x b+2y c+2z x y z|=0

Show without expanding at any stage that: det [ [a,b,c],[a+2x,b+2y,c+2z],[x,y,z]] =0

Prove that: |[b+c, c+a, a+b],[q+r, r+p, p+q],[y+z, z+x, x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|

If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|

Evaluate each of the following algebraic expressions for x=1,\ y=-1, z=2,\ a=-2,\ b=1,\ c=-2: (i) a x+b y+c z (ii) a x^2+b y^2-c z^2 (iii) a x y+b y z+c x y

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

If [[x,a,c] , [1,y,b] , [2,3,z]] is a skew symmetric matrix then (x+y+z+a+b+c)=

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none