Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:`|[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2`

Text Solution

AI Generated Solution

To show that \(|\begin{bmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{bmatrix}| = (1 - x^3)^2\), we will use properties of determinants. ### Step-by-step Solution: 1. **Write the Determinant**: We start with the determinant: \[ D = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.5|18 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

Without expanding a determinant at any stage, show that |{:(x^(2)+x, x+1, x+2),(2x^(2) +3x-1, 3x, 3x-3),(x^(2) +2x+3, 2x-1, 2x-1):}|=xA+B where A and B are determinants of order 3 not involving x.

[[3x^(2),3x,1x^(2)+2x,2x+1,12x+1,x+2,1]]=(x-1)^(3)

Without expanding a determinant at any stage, show that |x^2+xx+1x-2 2x^2+3x-1 3x3x-3x^2+2x+3 2x-1 2x-1|=x A+B ,w h e r eAa n dB are determinant of order 3 not involving xdot

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

Consider the determinant D= |(x+2,2x+3,3x+4), (x+1, x+1, x+1), (0, 1, 3x +8)| If the determinant is expanded in the power of x, the coefficient of x is