Home
Class 11
PHYSICS
Given that vec(A)+vec(B)=vec(R) and vec...

Given that `vec(A)+vec(B)=vec(R)` and `vec(A)+2vec(B)` is perpendicular to `vec(A)` . Then :-

A

2B=R

B

B=2R

C

B=R

D

`B^(2)=2R^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply vector properties. ### Step 1: Understand the Given Information We are given two equations: 1. \( \vec{A} + \vec{B} = \vec{R} \) 2. \( \vec{A} + 2\vec{B} \) is perpendicular to \( \vec{A} \) ### Step 2: Use the Perpendicular Condition Since \( \vec{A} + 2\vec{B} \) is perpendicular to \( \vec{A} \), we can use the dot product: \[ (\vec{A} + 2\vec{B}) \cdot \vec{A} = 0 \] Expanding this gives: \[ \vec{A} \cdot \vec{A} + 2\vec{B} \cdot \vec{A} = 0 \] Let’s denote \( \vec{A} \cdot \vec{A} \) as \( A^2 \) (the magnitude squared of \( \vec{A} \)): \[ A^2 + 2\vec{B} \cdot \vec{A} = 0 \] From this, we can express \( \vec{B} \cdot \vec{A} \): \[ 2\vec{B} \cdot \vec{A} = -A^2 \quad \Rightarrow \quad \vec{B} \cdot \vec{A} = -\frac{A^2}{2} \] ### Step 3: Substitute \( \vec{B} \) in Terms of \( \vec{R} \) From the first equation, we can express \( \vec{B} \): \[ \vec{B} = \vec{R} - \vec{A} \] Now, substitute \( \vec{B} \) into the expression for \( \vec{B} \cdot \vec{A} \): \[ (\vec{R} - \vec{A}) \cdot \vec{A} = -\frac{A^2}{2} \] Expanding this gives: \[ \vec{R} \cdot \vec{A} - \vec{A} \cdot \vec{A} = -\frac{A^2}{2} \] Substituting \( \vec{A} \cdot \vec{A} = A^2 \): \[ \vec{R} \cdot \vec{A} - A^2 = -\frac{A^2}{2} \] Rearranging gives: \[ \vec{R} \cdot \vec{A} = \frac{A^2}{2} \] ### Step 4: Find the Magnitude of \( \vec{R} \) Now we will find the magnitude of \( \vec{R} \): Using the equation \( \vec{R} = \vec{A} + \vec{B} \) and substituting \( \vec{B} \): \[ \vec{R} = \vec{A} + (\vec{R} - \vec{A}) = \vec{R} \] To find \( R^2 \): \[ R^2 = A^2 + B^2 + 2\vec{A} \cdot \vec{B} \] Substituting \( \vec{B} = \vec{R} - \vec{A} \): \[ R^2 = A^2 + (\vec{R} - \vec{A})^2 + 2\vec{A} \cdot (\vec{R} - \vec{A}) \] This leads to: \[ R^2 = A^2 + B^2 + 2\left(\frac{A^2}{2}\right) = A^2 + B^2 + A^2 = 2A^2 + B^2 \] ### Step 5: Conclusion From the previous steps, we can conclude that the relationship between the vectors leads us to find that \( \vec{B} = \frac{1}{2}\vec{R} \). ### Final Answer Thus, the correct option is that \( \vec{B} = \frac{1}{2}\vec{R} \). ---

To solve the problem step by step, we will analyze the given information and apply vector properties. ### Step 1: Understand the Given Information We are given two equations: 1. \( \vec{A} + \vec{B} = \vec{R} \) 2. \( \vec{A} + 2\vec{B} \) is perpendicular to \( \vec{A} \) ### Step 2: Use the Perpendicular Condition ...
Promotional Banner

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 2 [MULTIPLE CORRECT CHOICE TYPE]|6 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 2 [MATRIX TYPE]|1 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE- 3 (SECTION - B)|1 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to vec(A) Further if |vec(A)|=|vec(C )| , then what is the angle between vec(A) and vec(B)

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

The resultant vec(C ) of vec(A) and vec(B) is perpendicular to vec(A) . Also, |vec(A)|=|vec(C )| . The angle between vec(A) and vec(B) is

If vec a,vec b, are two vectors such that |vec a+vec b|=|vec a|, then prove that 2vec a+vec b is perpendicular to vec b .

If vec a,vec b are two vectors such that |vec a+vec b|=|vec b|, then prove that vec a+2vec b is perpendicular to vec a .

If vec a,vec b are two vectors such that |vec a+vec b|=|vec b|, then prove that vec a+2vec b is perpendicular to vec a .

Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is :

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is:

If vec a+vec b is perpendicular to vec b and vec a+vec 2b is perpendicular to vec a then

BANSAL-UNIT DIMENSION, VECTOR & BASIC MATHS-EXERCISE - 1 [SINGLE CORRECT CHOICE TYPE]
  1. If vec(a) be a unit vector, then :-

    Text Solution

    |

  2. If two numerical equal forces P and P acting at a point produce a resu...

    Text Solution

    |

  3. Given that vec(A)+vec(B)=vec(R) and vec(A)+2vec(B) is perpendicular...

    Text Solution

    |

  4. The value of lambda for two perpendicular vectors vec(A)=2vec(i)+lamb...

    Text Solution

    |

  5. The resultant of two vectors of magnitude 3 units 4 units is 1 unit. ...

    Text Solution

    |

  6. If vec(i) and vec(j) are unit vectors along x-axis and y-axis respecti...

    Text Solution

    |

  7. The angle subtended by vector vec(i)+vec(j) with x-axis is :-

    Text Solution

    |

  8. Moment about point whose coordinate is (1,2,3) of a force represented ...

    Text Solution

    |

  9. If vec(A) and vec(B) denote the sides of a parallelogram and its area ...

    Text Solution

    |

  10. A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-...

    Text Solution

    |

  11. The unit vector along vec(i)+vec(j) is :-

    Text Solution

    |

  12. Two constant forces vec(F)(1) and vec(F)(2) acts on a body of mass 8 k...

    Text Solution

    |

  13. Figure shows three vectors a, b and c. If RQ=2PR, which of the followi...

    Text Solution

    |

  14. Component of -10hat(j) in the direction of 3hat(i)-4hat(j) is :-

    Text Solution

    |

  15. If 3hat(i)-2hat(j)+8hat(k) and 2hat(i)+xhat(j)+hat(k) are at right ...

    Text Solution

    |

  16. If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , the...

    Text Solution

    |

  17. Write a force of 10 N in x-y plane in terms of unit vectors hat(i) a...

    Text Solution

    |

  18. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  19. In a clockwise system :-

    Text Solution

    |

  20. vec(a)=3hat(i)+5hat(j),vec(b)=2hat(i)+7hat(j) and vec(c)=hat(i)+9hat(j...

    Text Solution

    |