Home
Class 12
PHYSICS
Four similar charges each of charge +q a...

Four similar charges each of charge `+q` are placed at four corners of a square of side a. Find the value of integral `-int_(infty)^(a//sqrt(2)) vec(E).vec(d)r.` (in volts) if value of integral `-int_(a//sqrt(2))^(0) vec(E).vec(dr)=(sqrt(2)Kq)/(a)("where" K=(1)/(4 pi epsilon_(0)))`

A

`(4Kq)/(a)`

B

`(3Kq)/(a)`

C

`(3sqrt(2)Kq)/(a)`

D

`(4sqrt(2)Kq)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \[ -\int_{-\infty}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} \] given that \[ -\int_{\frac{a}{\sqrt{2}}}^{0} \vec{E} \cdot d\vec{r} = \frac{\sqrt{2}Kq}{a} \] where \( K = \frac{1}{4\pi \epsilon_0} \). ### Step-by-step Solution: 1. **Understanding the Electric Field**: The electric field \( \vec{E} \) due to a point charge \( +q \) at a distance \( r \) is given by: \[ \vec{E} = K \frac{q}{r^2} \hat{r} \] where \( K = \frac{1}{4\pi \epsilon_0} \). 2. **Setting Up the Integral**: We need to evaluate the integral from \(-\infty\) to \(\frac{a}{\sqrt{2}}\). We can break this into two parts: \[ -\int_{-\infty}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} = -\int_{-\infty}^{0} \vec{E} \cdot d\vec{r} - \int_{0}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} \] 3. **Using the Given Value**: We know from the problem statement that: \[ -\int_{\frac{a}{\sqrt{2}}}^{0} \vec{E} \cdot d\vec{r} = \frac{\sqrt{2}Kq}{a} \] Therefore, we can substitute this into our expression: \[ -\int_{-\infty}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} = -\left(-\int_{0}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} + \frac{\sqrt{2}Kq}{a}\right) \] 4. **Combining the Integrals**: The integral from \( 0 \) to \( \frac{a}{\sqrt{2}} \) is the remaining part. Let's denote it as \( V_0 \): \[ V_0 = -\int_{0}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} \] Thus, we have: \[ -\int_{-\infty}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} = V_0 + \frac{\sqrt{2}Kq}{a} \] 5. **Finding the Value of the Integral**: Now, we need to find the total potential difference. The potential at infinity is zero, and at \( \frac{a}{\sqrt{2}} \) we have: \[ V = 4Kq \frac{\sqrt{2}}{a} \] Therefore, we can express the total integral as: \[ V - 0 = 4Kq \frac{\sqrt{2}}{a} - \frac{\sqrt{2}Kq}{a} \] Simplifying gives: \[ V = 3Kq \frac{\sqrt{2}}{a} \] 6. **Final Answer**: Thus, the value of the integral is: \[ -\int_{-\infty}^{\frac{a}{\sqrt{2}}} \vec{E} \cdot d\vec{r} = 3Kq \frac{\sqrt{2}}{a} \]
Promotional Banner

Topper's Solved these Questions

  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise DPP 3.3|20 Videos
  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise DPP 3.4|15 Videos
  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS|Exercise DPP 3.1|14 Videos
  • ELECTRIC FLUX AND GAUSS LAW

    CENGAGE PHYSICS|Exercise MCQ s|38 Videos
  • ELECTRICAL MEASURING INSTRUMENTS

    CENGAGE PHYSICS|Exercise M.C.Q|2 Videos

Similar Questions

Explore conceptually related problems

If three point charges are placed at the three corners of a square of diagonals 2a as shown in figure. Then int_(B)^(A) vecE.vec(dr) will be -

The value of the integral int_(0)^(100pi) sqrt(1-cos2x)" d"x is

Find the value of the definite integral int_(0)^( pi)|sqrt(2)sin x+2cos x|dx

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is Asqrt(2) . then find the value of A .

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

If int_(0)^(a)sqrt(x)dx=2a int_(0)^( pi/2)sin^(3)xdx find the value of integral int_(a)^(a+1)xdx