Home
Class 12
MATHS
If X(r ) = cos ((pi)/(2^(r ))) + i sin (...

If `X_(r )` = cos `((pi)/(2^(r ))) + i` sin `((pi)/(2^(r )))` then `x_(1), x_(2)…. X_(infty)` is

A

`-infty`

B

`-2`

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (III. CHOOSE THE INCORRECT THE STATEMENTS)|5 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (IV. CHOOSE THE ODD MAN OUT)|6 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (1 MARK)|20 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS )|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 5 MARKS|4 Videos

Similar Questions

Explore conceptually related problems

If Z_r =cos ((pi)/(2^r))+isin((pi)/(2^r)) then Z_(1).Z_(2).Z_(3)"…….." upto oo equals

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

cos ((3pi )/( 2 ) + x) cos (2pi + x) [cot ((3pi)/( 2)- x ) + cot (2pi +x) ]=1

Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

The value of int_(-(pi)/(2)) ^((pi)/(2)) sin^(2) x cos x dx is

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

int_(-(pi)/(2))^((pi)/(2)) ( sin x )/( 2+ cos x )dx =".........."

The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x)) simplifies to