Home
Class 12
MATHS
If alpha=tan^(-1)((sqrt(3)x)/(2y-x)),bet...

If `alpha=tan^(-1)((sqrt(3)x)/(2y-x)),beta=tan^(-1)((2x-y)/(sqrt(3y)))" then "alpha-beta=`

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`(-pi)/(3)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (II. Fill in the blanks :)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (III. Choose the incorrect answer : )|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise EXERCISE 4.6 (Choose the Correct or the most suitable answer from the given four alternatives : )|20 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos
  • MODAL QUESTION PAPER

    SURA PUBLICATION|Exercise PART - IV|26 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to (A) tan ^(-1)((9)/( 5sqrt(10))) (B) cos ^(-1)((9)/( 5sqrt(10))) (C) tan^(-1)((9)/(14)) (D) sin ^(-1)((9)/(5 sqrt(10)))

If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2)) and tanpi/8=k , then (a) alpha+beta=pi for x in [(1,1)/k] (b) alpha+beta for x in (-k , k) (c) alpha+beta=pi for x in [(1,1)/k] (d) alpha+beta=0 for x in [-k , k]

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

The angle between the lines joining origin to the points of intersection of the line sqrt(3)x+y=2 and the curve y^2-x^2=4 is (A) tan^(-1)(2/(sqrt(3))) (B) pi/6 (C) tan^(-1)((sqrt(3))/2) (D) pi/2

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))