Home
Class 12
MATHS
If vec(a)=hat(i)+hat(i)+hat(k).vec(b)=ha...

If `vec(a)=hat(i)+hat(i)+hat(k).vec(b)=hat(i)andvec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k).`" If "c_(1)=1andc_(2)=2" find "c_(3)" such that "vec(a),vec(b)andvec(c)" are coplanar. "` depends on neither x nor y .

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.3|9 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.4|11 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS )|5 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

Let vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)and vec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k). " If "c_(1)=1 and c_(2)=2" find "c_(3)" such that "vec(a), vec(b) and vec(c)" are coplanar. "

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j + c_(3)hat k . If c_(1) = 1 and c_(2) = 2 , find c_(3) which makes vec a, vec b and vec c coplanar.

If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)," find (i) "(vec(a)xxvec(b))xxvec(c)" (ii) "vec(a)xx(vec(b)xxvec(c))

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k)andvec(c)=3hat(i)+hat(j)" find "lambda" such that "vec(a)+lambdavec(b) is perpendicular to vec(c).

If vec(a)=vec(i)+2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+hat(2j)+hat(k)," find "vec(a)*(vec(b)xxvec(c))

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=3hat(i)+5hat(j)+2hat(k),vec(c)=-hat(i)-2hat(j)+3hat(k), vec(a)(vec(a)xxvec(b))=(vec(a)*vec(c))vec(b)-(vec(a)*vec(b))vec(c)

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j +c_(3)hat k . Then if c_(2) = -1 and c_(3) = 1 , show that no value of c_(1) can make vec a, vec b and vec c coplanar.

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=2hat(i)-hat(j)+hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)andvec(a)xx(vec(b)xxvec(c))=lvec(a)+mvec(b)+nvec(c) find the values fo l,m,n.