Home
Class 12
MATHS
A firm produces two types of calculators...

A firm produces two types of calculators each week, x number of type A and y number of type B. The weekly revenue and cost functions (in rupees) are R(x,y) `=80 x + 90 y + 0.04 xy - 0.05x^(2) - 0.05y^(2)` and `C(x,y) =8x + 6y + 2000` respectively.
(i) Find the profit function P(x,y).
(ii) Find `(del P)/(del x)(1200, 1800)` and `(del P)/(del y) (1200, 1800)` and interpret these results.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.5|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.6|9 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.3|7 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

If u (x,y) =x ^(2) + 2xy-y ^(2) then (del u)/(del x) + (delu)/(del y) is:

If u=f(y/x) , then x(del u)/(del x) + y(del u)/(del y) =_________

If u=(x-y)^(2) , then (del u)/(del x) + (del u)/(del y) is

A function f (x,y) is said to be harmonic if (del^(2)f)/(del x ^(2)) + (del^(2)f)/(dely^(2)) =

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=

If v(x,y) = log (e^(x) + e^(y)) , then (del v)/(del x) + (del v)/(del y) is equal to