Home
Class 12
MATHS
If sqrt(x) + sqrt(y) = sqrt(a), prove th...

If `sqrt(x) + sqrt(y) = sqrt(a)`, prove that `(dy)/(dx) = -sqrt(y/x)`.

Text Solution

Verified by Experts

The correct Answer is:
`-sqrt(y/x)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise THREE MARKS QUESTIONS WITH ANSWERS|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise FOUR MARKS QUESTIONS WITH ANSWERS|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • CONSTRUCTIONS

    SUBHASH PUBLICATION|Exercise QUESTION|1 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x) + sqrt(y) = sqrt(5) , Prove that (dy)/(dx) = (-3)/(2) when x= 4" and "y=9 .

If sqrt(x)+sqrt(y)=sqrt(10) , show that (dy)/(dx)+sqrt(y/x)=0

If sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - y) prove that (dy)/(dx) = (sqrt(1 - y^2))/(sqrt(1-x^2)) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...tooo))), prove that (dy)/(dx)=(sinx)/(1-2y)

x = sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Prove that: (dy)/(dx) = -y/x

If y=log(sqrt(x)+sqrt(x-a)) , then (dy)/(dx) is :

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)