Home
Class 12
MATHS
If sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - ...

If `sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - y)` prove that `(dy)/(dx) = (sqrt(1 - y^2))/(sqrt(1-x^2))`.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise FOUR MARKS QUESTIONS WITH ANSWERS|10 Videos
  • CONSTRUCTIONS

    SUBHASH PUBLICATION|Exercise QUESTION|1 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos

Similar Questions

Explore conceptually related problems

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

If sqrt(x) + sqrt(y) = sqrt(a) , prove that (dy)/(dx) = -sqrt(y/x) .

If y = tan^(-1)((sqrt(1 + x^2)-1)/(x)) , prove that (dx)/(dy) = 1/(2(1 + x^2))

If sqrt(x) + sqrt(y) = sqrt(5) , Prove that (dy)/(dx) = (-3)/(2) when x= 4" and "y=9 .

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)