Home
Class 12
MATHS
If y^(x) = e^(y -x), prove that (dy)/(dx...

If `y^(x) = e^(y -x)`, prove that `(dy)/(dx) = ((1 + log y)^2)/(log y)`.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise FOUR MARKS QUESTIONS WITH ANSWERS|10 Videos
  • CONSTRUCTIONS

    SUBHASH PUBLICATION|Exercise QUESTION|1 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos

Similar Questions

Explore conceptually related problems

If x = e^(x/y) , prove that (dy)/(dx) = (x-y)/(x log x) .

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y=e^(log x) , show that dy/dx=1

If x^(y) = a^(x) ,prove that dy/dx = xlog_(e)a - y/ xlog_(e)x .

If y= e^(3log x) , then show that (dy)/(dx)= 3x^(2) .

Solve (dy)/(dx)=(y)/(2y log y+y-x).

If y = 2^(log x) , then (dy)/(dx) is