Home
Class 11
PHYSICS
Find the dimensions of the quantity q fr...

Find the dimensions of the quantity q from the expression `T = 2pi sqrt((ml^3)/(3Yq)),` where T is time period of a bar of length l, mass m and Young's modulus Y.

Text Solution

Verified by Experts

The correct Answer is:
`L^(4)`
Promotional Banner

Topper's Solved these Questions

  • PHYSICAL WORLD AND MEASUREMENTS

    SL ARORA|Exercise Based on Deriving relationship|12 Videos
  • PHYSICAL WORLD AND MEASUREMENTS

    SL ARORA|Exercise Based on Significant|15 Videos
  • PHYSICAL WORLD AND MEASUREMENTS

    SL ARORA|Exercise problem|10 Videos
  • Physical world

    SL ARORA|Exercise Exercise|49 Videos
  • PROJECTILE MOTION

    SL ARORA|Exercise Problem For Self Practice|50 Videos

Similar Questions

Explore conceptually related problems

Find the dimensions of the quantity q from the expression : T = 2pi sqrt((ml^3q)/(5Y)), Where T is tiem period of a bar of length I, mass m and Young's modulus Y.

Find the dimensions of K in the relation T = 2pi sqrt((KI^2g)/(mG)) where T is time period, I is length, m is mass, g is acceleration due to gravity and G is gravitational constant.

By the method of dimensions, test the accuracy of the equation : delta = (mgl^3)/(4bd^3Y) where delta is depression in the middle of a bar of length I, breadth b, depth d, when it is loaded in the middle with mass m. Y is Young's modulus of meterial of the bar.

Test dimensionally if the formula t= 2 pi sqrt(m/(F/x)) may be corect where t is time period, F is force and x is distance.

Check the dimensional correctness of the following equations : (i) T=Ksqrt((pr^3)/(S)) where p is the density, r is the radius and S is the surface tension and K is a dimensionless constant and T is the time period of oscillation. (ii) n=(1)/(2l)sqrt((T)/(m)) , when n is the frequency of vibration, l is the length of the string, T is the tension in the string and m is the mass per unit length. (iii) d=(mgl^3)/(4bd^(3)Y) , where d is the depression produced in the bar, m is the mass of the bar, g is the accelaration due to gravity, l is the length of the bar, b is its breadth and d is its depth and Y is the Young's modulus of the material of the bar.

The time period of a simple pendulum is given by the formula, T = 2pi sqrt(l//g) , where T = time period, l = length of pendulum and g = acceleration due to gravity. If the length of the pendulum is decreased to 1/4 of its initial value, then what happens to its frequency of oscillations ?

Show that the time period of a simplw pendulam of infinite length is given by t=2pi sqrt((R)/(g)) where R is the radius of the earth

Find the value of x in the relation Y = (T^x . Cos theta. Tau)/(L^3), where Y is Young's modulu. T is time period, tau is torque and L is length.

Find time period of the function, y=sin omega t + sin 2omega t + sin 3omega t

SL ARORA-PHYSICAL WORLD AND MEASUREMENTS-problem for self practice
  1. If the unit of force energy and velocity are 20 N, 200J and 5m//s, fin...

    Text Solution

    |

  2. When 1m, 1kg and 1min. Are taken as the fundamental units, the magnitu...

    Text Solution

    |

  3. If the units of length and force be increased three times, show that t...

    Text Solution

    |

  4. If velocity of light is taken as the unit of velocity and an year is t...

    Text Solution

    |

  5. Test the dimensional consistency of the following equations : (i)v=u...

    Text Solution

    |

  6. Use principle of homogenity of dimensions to find which one of the fo...

    Text Solution

    |

  7. A student conclude that the velocity v of a body falling freely under ...

    Text Solution

    |

  8. The viscous force 'F' acting on a small sphere of rtadius 'r' moving w...

    Text Solution

    |

  9. The dimensions of 'k' in the relation V = k avt (where V is the volume...

    Text Solution

    |

  10. The cirtical velocity (upsilon) of flow of a liquied through a pipe of...

    Text Solution

    |

  11. The rate of flow (V) of a liquid flowing through a pipe of radius r a...

    Text Solution

    |

  12. Test if the following equations are dimensionally correct: (a) h=(2S...

    Text Solution

    |

  13. The time period of a compound pendulum is given by T=2pisqrt((I)/(mg...

    Text Solution

    |

  14. Find the dimensions of the quantity q from the expression T = 2pi sqr...

    Text Solution

    |

  15. An artificial satellite of mass m is revolving in a circualr orbit aro...

    Text Solution

    |

  16. Check by the method of dimensions, the formula v = (1)/(lambda)sqrt((...

    Text Solution

    |

  17. Check the correctness of the equation : y = a "sin" (omega t + phi), w...

    Text Solution

    |

  18. Find the dimension of (a/b) in the equation : v = a + bt , where v is...

    Text Solution

    |

  19. Write the dimensions of a xx b in the relation E = ( b - x^(2))/( at),...

    Text Solution

    |

  20. The dimension of (a)/(b) in the equation p=(a-t^(-2))/(bx) where P is ...

    Text Solution

    |