Home
Class 11
PHYSICS
The position vectors of three particles ...

The position vectors of three particles of mass `m_(1) = 1kg, m_(2) = 2kg and m_(3) = 3kg` are `r_(1) = (hat(i) + 4hat(j) +hat(k))`m, `r_(2) = (hat(i)+hat(j)+hat(k))`m and `r_(3) = (2hat(i) - hat(j) -hat2k)`m, respectively. Find the position vector of their center of mass.

A

`r_(cm) =1/2(3i + j -2k)m`

B

`r_(cm) =1/2(3i + 2j -k)m`

C

`r_(cm) =1/2(3i + 3j -k)m`

D

`r_(cm) =1/2(3i + j -k)m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the center of mass of three particles, we can use the formula: \[ \mathbf{r}_{cm} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + m_3 \mathbf{r}_3}{m_1 + m_2 + m_3} \] ### Step 1: Identify the given values - Masses: - \( m_1 = 1 \, \text{kg} \) - \( m_2 = 2 \, \text{kg} \) - \( m_3 = 3 \, \text{kg} \) - Position vectors: - \( \mathbf{r}_1 = \hat{i} + 4\hat{j} + \hat{k} \) - \( \mathbf{r}_2 = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{r}_3 = 2\hat{i} - \hat{j} - 2\hat{k} \) ### Step 2: Calculate the total mass \[ m_{total} = m_1 + m_2 + m_3 = 1 + 2 + 3 = 6 \, \text{kg} \] ### Step 3: Calculate the weighted sum of the position vectors \[ m_1 \mathbf{r}_1 = 1 \cdot (\hat{i} + 4\hat{j} + \hat{k}) = \hat{i} + 4\hat{j} + \hat{k} \] \[ m_2 \mathbf{r}_2 = 2 \cdot (\hat{i} + \hat{j} + \hat{k}) = 2\hat{i} + 2\hat{j} + 2\hat{k} \] \[ m_3 \mathbf{r}_3 = 3 \cdot (2\hat{i} - \hat{j} - 2\hat{k}) = 6\hat{i} - 3\hat{j} - 6\hat{k} \] ### Step 4: Sum the weighted position vectors \[ m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + m_3 \mathbf{r}_3 = (\hat{i} + 4\hat{j} + \hat{k}) + (2\hat{i} + 2\hat{j} + 2\hat{k}) + (6\hat{i} - 3\hat{j} - 6\hat{k}) \] Combine the components: - \( \hat{i} \) components: \( 1 + 2 + 6 = 9 \) - \( \hat{j} \) components: \( 4 + 2 - 3 = 3 \) - \( \hat{k} \) components: \( 1 + 2 - 6 = -3 \) So, the total weighted sum is: \[ 9\hat{i} + 3\hat{j} - 3\hat{k} \] ### Step 5: Calculate the position vector of the center of mass \[ \mathbf{r}_{cm} = \frac{9\hat{i} + 3\hat{j} - 3\hat{k}}{6} \] Breaking it down: \[ \mathbf{r}_{cm} = \frac{9}{6}\hat{i} + \frac{3}{6}\hat{j} - \frac{3}{6}\hat{k} = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} - \frac{1}{2}\hat{k} \] ### Final Answer The position vector of the center of mass is: \[ \mathbf{r}_{cm} = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} - \frac{1}{2}\hat{k} \] ---

To find the position vector of the center of mass of three particles, we can use the formula: \[ \mathbf{r}_{cm} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + m_3 \mathbf{r}_3}{m_1 + m_2 + m_3} \] ### Step 1: Identify the given values - Masses: ...
Promotional Banner

Topper's Solved these Questions

  • CENTRE OF MASS

    DC PANDEY|Exercise Check points|50 Videos
  • CENTRE OF MASS

    DC PANDEY|Exercise Taking it together|73 Videos
  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY|Exercise Medical entrance s gallery|38 Videos
  • CENTRE OF MASS, IMPULSE AND MOMENTUM

    DC PANDEY|Exercise Comprehension type questions|15 Videos

Similar Questions

Explore conceptually related problems

For what value of m are the vector 2hat(i) - 3hat(j) + 4hat(k), hat(i) + 2hat(j)- hat(k) and m hat(i) - hat(j)+ 2hat(k) coplanar?

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Two blocks of mass 1kg and 3 kg have position v ectors hat(i) + 2 hat(j) + hat(k) and 3 hat(i) - 2 hat(j) + hat(k) , respectively . The center of mass of this system has a position vector.

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

If the vectors overline(a)=hat(i)+hat(j)+hat(k), overline(b)=hat(i)-hat(j)+hat(k), overline(c)=2hat(i)+3hat(j)+mhat(k) are coplanar, then m=

For what value of m are the vectors 2hat(i)-3hat(j)+4hat(k), hat(i)+3hat(j)-hat(k) and m hat(i)-hat(j)+2 hat(k) coplanar ?

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

DC PANDEY-CENTRE OF MASS-Medical entrances gallery
  1. The position vectors of three particles of mass m(1) = 1kg, m(2) = 2kg...

    Text Solution

    |

  2. A rod of weight w is supported by two parallel knife edges A and B an...

    Text Solution

    |

  3. Two particles of masses m(1),m(2) move with initial velocities u(1) an...

    Text Solution

    |

  4. The figure shows a smooth curved track terminating in a smooth horizon...

    Text Solution

    |

  5. A block having mass m collides with an another stationary block having...

    Text Solution

    |

  6. A smooth curved surface of height 10 m is ended horizontally. A spring...

    Text Solution

    |

  7. A frog sits on the end of a long board of length L = 5 m. The board re...

    Text Solution

    |

  8. A particle of mass m, collides with another stationary particle of mas...

    Text Solution

    |

  9. A body from height h is dropped, if the coefficient of restitution is ...

    Text Solution

    |

  10. Three particles of masses 0.50 kg, 1.0 kg and are placed at the corner...

    Text Solution

    |

  11. A large number of particles are placed around the origin, each at a di...

    Text Solution

    |

  12. A circular disc rolls on a horizontal floor without slipping and the c...

    Text Solution

    |

  13. The linear momentum of a particle varies with time t as p= a +bt + ct^...

    Text Solution

    |

  14. A body of mass (4m) is laying in xy-plane at rest. It suddenly explode...

    Text Solution

    |

  15. The position of center of mass of a system of particles does not depen...

    Text Solution

    |

  16. A bullet is fired from the gun. The gun recoils, the kinetic energy of...

    Text Solution

    |

  17. An explosion blows a rock into three parts. Two parts go off at right ...

    Text Solution

    |

  18. The linear momentum is conserved in

    Text Solution

    |

  19. Three particles , each of mass m, are placed at the vertices of a righ...

    Text Solution

    |

  20. A ball of mass 'm' moving with a horizontal velocity 'v' strikes the b...

    Text Solution

    |

  21. In an inelastic collision

    Text Solution

    |