Home
Class 12
MATHS
Find (dy)/(dx) in the following:y=sin^(...

Find `(dy)/(dx)` in the following:`y=sin^(-1)((1-x^2)/(1+x^2))`,`0 lt x lt 1`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)\), we will follow these steps: ### Step 1: Rewrite the function Let: \[ y = \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.8|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.4|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((2x)/(1+x^(2)))

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find the (dy)/(dx) of y=sin^(-1)((1-x^2)/(1+x^2))

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find (dy)/(dx) , if y=sin^(-1)x+sin^(-1)sqrt(1-x^2) , -1lt=xlt=1

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)), find (dy)/(dx) in each of the following cases: (i) x in(0,1)( ii) x in(-1,0)