Home
Class 12
MATHS
Find (dy)/(dx) in the following:y=sin^(...

Find `(dy)/(dx)` in the following:`y=sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2)) lt x lt 1/(sqrt(2))`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}(2x\sqrt{1-x^2})\), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = \sin^{-1}(2x\sqrt{1-x^2}) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.8|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.4|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx in the following : y=sin^(-1)(2xsqrt(1-x^(2))),-1/sqrt2ltxlt1/sqrt2 .

If y=sin^(-1)(6xsqrt(1-9x^(2))),-1/(3sqrt2)ltxlt1/(3sqrt2) , then find (dy)/(dx) .

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

Find (dy)/(dx) , if y=sin^(-1)x+sin^(-1)sqrt(1-x^2) , -1lt=xlt=1

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)), -1/(sqrt(2))

Find quad (dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))