Home
Class 12
MATHS
Evaluate (i) sin [(pi/3 - sin^(-1)(-1/...

Evaluate
(i) `sin [(pi/3 - sin^(-1)(-1/2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin \left( \frac{\pi}{3} - \sin^{-1} \left( -\frac{1}{2} \right) \right) \), follow these steps: ### Step 1: Simplify the inverse sine expression First, we use the property of the inverse sine function: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] So, \[ \sin^{-1} \left( -\frac{1}{2} \right) = -\sin^{-1} \left( \frac{1}{2} \right) \] ### Step 2: Substitute back into the original expression Now substitute this back into the original expression: \[ \sin \left( \frac{\pi}{3} - \left( -\sin^{-1} \left( \frac{1}{2} \right) \right) \right) \] This simplifies to: \[ \sin \left( \frac{\pi}{3} + \sin^{-1} \left( \frac{1}{2} \right) \right) \] ### Step 3: Determine the value of \( \sin^{-1} \left( \frac{1}{2} \right) \) We know that: \[ \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} \] Thus, \[ \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6} \] ### Step 4: Substitute and simplify Substitute \( \frac{\pi}{6} \) into the expression: \[ \sin \left( \frac{\pi}{3} + \frac{\pi}{6} \right) \] Combine the fractions: \[ \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Step 5: Evaluate the sine function Finally, evaluate the sine function: \[ \sin \left( \frac{\pi}{2} \right) = 1 \] So, the value is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE|152 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

sin[(pi)/(2)-sin^(-1)-1/2]

Evaluate :sin[(pi)/(3)-sin^(-1)(-(1)/(2))]

sin[(pi)/(2)-sin^(-1)(-(1)/(2))]

Find the value of sin[pi/3 - sin^(-1) (- 1/2)]

Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3)/2)]

Write the value of sin[(pi)/(3)-sin^(-1)(-(1)/(2))]

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

Find the value of the following sin[pi/3 - sin^(-1) . (1/2)]