Home
Class 12
MATHS
Evaluate (i) sin (cos^(-1) (3/5))...

Evaluate (i) `sin (cos^(-1) (3/5))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin(\cos^{-1}(3/5)) \), we can follow these steps: ### Step 1: Let \( \theta = \cos^{-1}(3/5) \) This means that \( \cos(\theta) = \frac{3}{5} \). **Hint:** Remember that \( \cos^{-1}(x) \) gives you an angle whose cosine is \( x \). ### Step 2: Draw a right triangle In a right triangle, the cosine of an angle is defined as the ratio of the adjacent side (base) to the hypotenuse. Here, we can represent this as: - Adjacent side (base) = 3 - Hypotenuse = 5 **Hint:** Visualizing the problem with a triangle can help you understand the relationships between the sides and angles. ### Step 3: Find the length of the opposite side (perpendicular) Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Base}^2 + \text{Perpendicular}^2 \] Substituting the known values: \[ 5^2 = 3^2 + \text{Perpendicular}^2 \] \[ 25 = 9 + \text{Perpendicular}^2 \] \[ \text{Perpendicular}^2 = 25 - 9 = 16 \] \[ \text{Perpendicular} = \sqrt{16} = 4 \] **Hint:** The Pythagorean theorem is a key tool for finding missing side lengths in right triangles. ### Step 4: Calculate \( \sin(\theta) \) Now that we have the lengths of all sides, we can find \( \sin(\theta) \): \[ \sin(\theta) = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{4}{5} \] **Hint:** The sine function is defined as the ratio of the opposite side to the hypotenuse in a right triangle. ### Step 5: Conclusion Thus, we have: \[ \sin(\cos^{-1}(3/5)) = \frac{4}{5} \] **Final Answer:** \( \frac{4}{5} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE|152 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate sin[cos^(-1) ((3)/(5))]

Evaluate sin(2cos^(-1)(-(5)/(15)))

Evaluate sin[2cos^(-1)(-3/5)] .

Evaluate: sin(cos^(-1)(3)/(5)+csc^(-1)(13)/(5))

Evaluate: sin{cos^(-1)(-(3)/(5))}( ii) tan{cos^(-1)(-(12)/(13))}

Evaluate: (i) sin^(4)x cos^(3)xdx (ii) int sin^(5)xdx

Evaluate: (i) int sin^(3)x cos^(5)xdx (ii) int(1)/(sin^(4)x cos^(2)x)dx

Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .

Evaluate following 1. sin(cos^(-1) 3//5) 2. cos(tan^(-1)3//4) 3. sin(pi/2-sin^(-1) (-1/2))

Evaluate: (i) int cos^(5)xdx(ii)int sin^(5)x cos xdx