Home
Class 12
MATHS
Evaluate (ii) cos{tan^(-1) (3/4)}...

Evaluate (ii) `cos{tan^(-1) (3/4)}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \cos(\tan^{-1}(3/4)) \), we can follow these steps: ### Step 1: Let \( \theta = \tan^{-1}(3/4) \) This means that \( \tan(\theta) = \frac{3}{4} \). **Hint:** Remember that the tangent of an angle in a right triangle is the ratio of the opposite side to the adjacent side. ### Step 2: Form a right triangle In a right triangle, if we let the opposite side (perpendicular) be 3 and the adjacent side (base) be 4, we can find the hypotenuse using the Pythagorean theorem. **Hint:** The Pythagorean theorem states that \( h^2 = a^2 + b^2 \), where \( h \) is the hypotenuse, and \( a \) and \( b \) are the other two sides. ### Step 3: Calculate the hypotenuse Using the sides we have: \[ h = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] **Hint:** Make sure to square each side correctly and then add them before taking the square root. ### Step 4: Find \( \cos(\theta) \) Now that we have the lengths of all sides of the triangle, we can find \( \cos(\theta) \): \[ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5} \] **Hint:** The cosine of an angle is the ratio of the length of the adjacent side to the hypotenuse. ### Step 5: Conclusion Thus, we find that: \[ \cos(\tan^{-1}(3/4)) = \frac{4}{5} \] **Final Answer:** \( \frac{4}{5} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE|152 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) cot((sin^(-1)3)/(4)+(sec^(-1)4)/(3))( ii) sin(tan^(-1)x+(tan^(-1)1)/(x)) for x<0

Evaluate: i) sin(cos^(-1)(3/5)) , ii) cos(tan^(-1)(3/4))

Evaluate: sin{tan^(-1)((7)/(24))}( ii) cos{cot^(-1)((5)/(12))}csc{cot^(-1)((4)/(3))}

Evaluate: (i) tan {cos^(-1)(-(7)/(25))}_( (ii) )csc{cot^(-1)(-(12)/(5))}cos{tan^(-1)(-(3)/(4))}

Evaluate: sin{cos^(-1)(-(3)/(5))}( ii) tan{cos^(-1)(-(12)/(13))}

Evaluate: i) tan{1/2cos^(-1)sqrt(5)/3} , ii) tan{2tan^(-1)1/5-pi/4}

Evaluate the following (i) sin ( cosec ^(-1) 5/3)" "(ii) cot ( tan^(-1). 3/4)

Evaluate the following: cos(tan^(-1)3/4)

evaluate tan[(1)/(2)cos^(-1)((3)/(sqrt(11)))]

Evaluate each of the following: cos((cos^(-1)5)/(13))( ii) cos((sin^(-1)8)/(17))( iii) cos((tan^(-1)3)/(4))