Home
Class 12
MATHS
General solution of the equation 4 cot...

General solution of the equation
`4 cot 2 theta = cot^(2) theta - tan^(2) theta` is ` theta` =

A

`npi +- (pi//2)`

B

`npi +- (pi//3)`

C

`npi +- (pi//4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4 \cot(2\theta) = \cot^2(\theta) - \tan^2(\theta) \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \cot(2\theta) = \frac{\cos(2\theta)}{\sin(2\theta)} = \frac{1 - \tan^2(\theta)}{2\tan(\theta)} \] Thus, we can rewrite the left side: \[ 4 \cot(2\theta) = 4 \cdot \frac{1 - \tan^2(\theta)}{2\tan(\theta)} = \frac{4(1 - \tan^2(\theta))}{2\tan(\theta)} = \frac{2(1 - \tan^2(\theta))}{\tan(\theta)} \] ### Step 2: Rewrite the right side The right side of the equation is: \[ \cot^2(\theta) - \tan^2(\theta) = \frac{\cos^2(\theta)}{\sin^2(\theta)} - \frac{\sin^2(\theta)}{\cos^2(\theta)} \] Finding a common denominator gives: \[ \frac{\cos^4(\theta) - \sin^4(\theta)}{\sin^2(\theta)\cos^2(\theta)} \] Using the difference of squares: \[ \cos^4(\theta) - \sin^4(\theta) = (\cos^2(\theta) - \sin^2(\theta))(\cos^2(\theta) + \sin^2(\theta)) = (\cos^2(\theta) - \sin^2(\theta)) \] since \( \cos^2(\theta) + \sin^2(\theta) = 1 \). ### Step 3: Set the two sides equal Now we equate both sides: \[ \frac{2(1 - \tan^2(\theta))}{\tan(\theta)} = \frac{\cos^2(\theta) - \sin^2(\theta)}{\sin^2(\theta)\cos^2(\theta)} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 2(1 - \tan^2(\theta)) \cdot \sin^2(\theta) \cos^2(\theta) = \tan(\theta)(\cos^2(\theta) - \sin^2(\theta)) \] ### Step 5: Substitute \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\) Substituting \(\tan(\theta)\) into the equation: \[ 2(1 - \frac{\sin^2(\theta)}{\cos^2(\theta)}) \cdot \sin^2(\theta) \cos^2(\theta) = \frac{\sin(\theta)}{\cos(\theta)}(\cos^2(\theta) - \sin^2(\theta)) \] ### Step 6: Simplify the equation This can be simplified to: \[ 2\sin^2(\theta) \cos^2(\theta) - 2\sin^4(\theta) = \sin(\theta)(\cos^2(\theta) - \sin^2(\theta)) \] Rearranging gives us a polynomial equation in terms of \(\sin(\theta)\) and \(\cos(\theta)\). ### Step 7: Solve for \(\tan(\theta)\) From the equation, we can find: \[ \tan^2(\theta) = 1 \] Thus, \(\tan(\theta) = 1\) or \(\tan(\theta) = -1\). ### Step 8: Find the general solution The general solutions for \(\tan(\theta) = 1\) and \(\tan(\theta) = -1\) are: \[ \theta = n\pi + \frac{\pi}{4} \quad \text{and} \quad \theta = n\pi - \frac{\pi}{4} \] Combining these gives: \[ \theta = n\pi \pm \frac{\pi}{4} \] ### Final Answer Thus, the general solution is: \[ \theta = n\pi \pm \frac{\pi}{4}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Solve 4cot2 theta=cot^(2)theta-tan^(2)theta

General solution of tan 5 theta = 'cot 2 theta'

General solution of the equation 2 cot ^(2) theta + 2sqrt3 cot theta + 4 cosec theta + 8 =0 is

25.General solution of tan5 theta=cot2 theta is

If tan theta + cot theta = 2 , then theta is

General solution of tan5 theta=cot2 theta is

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE
  1. Number of solutions of the equation |cot x| = cot x + csc x, where 0...

    Text Solution

    |

  2. If x + cos theta = sin theta has a real solution, then

    Text Solution

    |

  3. General solution of the equation 4 cot 2 theta = cot^(2) theta - tan...

    Text Solution

    |

  4. If, in Delta ABC, a = 16, b = 24, c = 20, then : sin (A/2)= ....

    Text Solution

    |

  5. If, in Delta ABC, a = 18, b = 24, c = 30, then : sin A= ....

    Text Solution

    |

  6. If, in Delta ABC, a = 8, b = 15, c = 17. then : sin(A/2) and cos A a...

    Text Solution

    |

  7. If Delta ABC, a = 18, b = 24, c = 30 then the area of the triangle i...

    Text Solution

    |

  8. If, in DeltaABC, a = sqrt(2), b = sqrt(3), c = sqrt(5), then the area ...

    Text Solution

    |

  9. If the area of an acute-angled triangle is 75 m^(2) and two of its sid...

    Text Solution

    |

  10. If, DeltaABC, B = 90^(@), C = 60^(@), b=1 find a and c

    Text Solution

    |

  11. In triangle ABC,a= 5,b=7 and sin A =3/4 how many such triangle are pos...

    Text Solution

    |

  12. In a DeltaABC, if A=45^(@) and B=75^(@), then a+sqrt(2)c=

    Text Solution

    |

  13. If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then th...

    Text Solution

    |

  14. If in DeltaABC , a = 4,b=3, A = 60^(@) then c is a root of the equati...

    Text Solution

    |

  15. If in a triangle ABC, 3sinA=6sinB=2sqrt3sinC then the value of /A=

    Text Solution

    |

  16. A circle is inscribed in an equilateral triangle of side a. The area o...

    Text Solution

    |

  17. If, in Delta ABC, angle A,B,C are in A.P. And b : c = sqrt(3) : sqrt(2...

    Text Solution

    |

  18. If, in Delta ABC, a = 2b and A = 3B, then A :

    Text Solution

    |

  19. If Delta ABC, is right angled at C, then: 4s (s - a)(s - b)(s-c) = ....

    Text Solution

    |

  20. If sin (A + B + C) = 1, tan (A - B) = 1//sqrt(3) and "sec" (A + C) = 2...

    Text Solution

    |