Home
Class 12
MATHS
tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=...

`tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=`

A

`5-sqrt(2)`

B

`sqrt(5)-2`

C

`5+sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \), we will follow these steps: ### Step 1: Let \( x = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \) By defining \( x \) in this way, we can express \( \tan\left(\frac{1}{2} x\right) \) in terms of \( \cos x \). ### Step 2: Use the identity for \( \tan\left(\frac{x}{2}\right) \) The identity for \( \tan\left(\frac{x}{2}\right) \) is given by: \[ \tan\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{1 + \cos x}} \] Substituting \( \cos x = \frac{2}{\sqrt{5}} \) into the formula gives: \[ \tan\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \frac{2}{\sqrt{5}}}{1 + \frac{2}{\sqrt{5}}}} \] ### Step 3: Simplify the expression Now we simplify the numerator and denominator: - **Numerator**: \[ 1 - \frac{2}{\sqrt{5}} = \frac{\sqrt{5} - 2}{\sqrt{5}} \] - **Denominator**: \[ 1 + \frac{2}{\sqrt{5}} = \frac{\sqrt{5} + 2}{\sqrt{5}} \] ### Step 4: Substitute back into the formula Now substituting these back into the formula: \[ \tan\left(\frac{x}{2}\right) = \sqrt{\frac{\frac{\sqrt{5} - 2}{\sqrt{5}}}{\frac{\sqrt{5} + 2}{\sqrt{5}}}} = \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} \] ### Step 5: Rationalize the expression To rationalize the expression, we multiply the numerator and denominator by \( \sqrt{5} - 2 \): \[ \tan\left(\frac{x}{2}\right) = \sqrt{\frac{(\sqrt{5} - 2)^2}{(\sqrt{5} + 2)(\sqrt{5} - 2)}} \] Calculating the denominator: \[ (\sqrt{5} + 2)(\sqrt{5} - 2) = 5 - 4 = 1 \] Thus, we have: \[ \tan\left(\frac{x}{2}\right) = \sqrt{(\sqrt{5} - 2)^2} = \sqrt{5} - 2 \] ### Final Answer Thus, the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \) is: \[ \sqrt{5} - 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If the value of the expression tan((1)/(2)cos^(-1).(2)/(sqrt5)) is in the form of a+sqrtb where a, b in Z , then the value of (a+b)/(b) is

Find the value of tan((1)/(2)cos^(-1)((sqrt(5))/(3)))

Simplify tan[(1)/(2)cos^(-1)((3)/(sqrt(11)))]

evaluate tan[(1)/(2)cos^(-1)((3)/(sqrt(11)))]

Evaluate: tan{(1)/(2)cos^(-1)((sqrt(5))/(3))}

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

The value of tan[(1)/(2)cos^(-1)((sqrt5)/(3))] is

tan ((1) / (2) (cos ^ (- 1) ((sqrt (5)) / (3)))

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

Value of 3tan^(-1)((1)/(3))+tan^(-1)((1)/(2))+sin^(-1)((1)/(sqrt(5)))+cos^(-1)((2)/(sqrt(5))) is greater than

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE
  1. If tan^(-1) x + tan^(-1) y = (4pi)/(5), then cot^(-1) x + cot^(-1) y ...

    Text Solution

    |

  2. If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1)...

    Text Solution

    |

  3. tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=

    Text Solution

    |

  4. If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y...

    Text Solution

    |

  5. If y=2 tan ^(-1) x + sin^(-1) ((2x)/(1+x^(2))) " then: " y in

    Text Solution

    |

  6. If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2, then: x=

    Text Solution

    |

  7. If y = cot^(-1)(sqrt(tanalpha))-tan^(-1) (sqrt(tanalpha)), " than: " t...

    Text Solution

    |

  8. sin{cot^(-1)[cos(tan^(-1)x)]}=....

    Text Solution

    |

  9. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than ...

    Text Solution

    |

  10. If sin^(-1)x-cos^(-1)x=(pi)/(6), " then :" x=

    Text Solution

    |

  11. tan^-1((x+1)/(x-1))+tan^-1((x-1)/x)=tan^-1(-7)

    Text Solution

    |

  12. sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

    Text Solution

    |

  13. If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

    Text Solution

    |

  14. sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

    Text Solution

    |

  15. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  16. If tan^(-1) 3 +tan^(-1)x=tan^(-1)87 then x =

    Text Solution

    |

  17. Solve for x: tan^-1(x+1)+tan^-1(x-1)=tan^-1(8/31)

    Text Solution

    |

  18. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  19. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

    Text Solution

    |

  20. If sin^(-1)x=(pi)/(5) " for some x"in(-1,1) , "then : "cos^(-1)x=....

    Text Solution

    |