Home
Class 12
MATHS
sin{cot^(-1)[cos(tan^(-1)x)]}=.......

`sin{cot^(-1)[cos(tan^(-1)x)]}=....`

A

`sqrt((x^(2)+2)/(x^(2)+1))`

B

`sqrt((x^(2)+1)/(x^(2)+2))`

C

`sqrt(x^(2)+1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin\left(\cot^{-1}\left[\cos\left(\tan^{-1}x\right)\right]\right) \), we will follow these steps: ### Step 1: Substitute \( \tan^{-1} x \) with \( \theta \) Let \( \theta = \tan^{-1} x \). Then, we have: \[ \tan \theta = x \] ### Step 2: Construct a right triangle From the definition of tangent, we can construct a right triangle where the opposite side is \( x \) and the adjacent side is \( 1 \). Therefore, we can find the hypotenuse \( h \): \[ h = \sqrt{x^2 + 1^2} = \sqrt{1 + x^2} \] ### Step 3: Find \( \cos \theta \) Using the triangle, we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{1 + x^2}} \] ### Step 4: Substitute \( \cos \theta \) into the expression Now we substitute \( \cos \theta \) into the original expression: \[ \sin\left(\cot^{-1}\left[\cos\left(\tan^{-1} x\right)\right]\right) = \sin\left(\cot^{-1}\left[\frac{1}{\sqrt{1 + x^2}}\right]\right) \] ### Step 5: Let \( \phi = \cot^{-1}\left[\frac{1}{\sqrt{1 + x^2}}\right] \) Now, let \( \phi = \cot^{-1}\left[\frac{1}{\sqrt{1 + x^2}}\right] \). Then: \[ \cot \phi = \frac{1}{\sqrt{1 + x^2}} \] Thus, \( \tan \phi = \sqrt{1 + x^2} \). ### Step 6: Construct another right triangle We can construct another right triangle for \( \phi \) where the opposite side is \( \sqrt{1 + x^2} \) and the adjacent side is \( 1 \). The hypotenuse \( H \) is: \[ H = \sqrt{(\sqrt{1 + x^2})^2 + 1^2} = \sqrt{1 + x^2 + 1} = \sqrt{2 + x^2} \] ### Step 7: Find \( \sin \phi \) Now we can find \( \sin \phi \): \[ \sin \phi = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{1 + x^2}}{\sqrt{2 + x^2}} \] ### Step 8: Final expression Thus, we have: \[ \sin\left(\cot^{-1}\left[\cos\left(\tan^{-1} x\right)\right]\right) = \frac{\sqrt{1 + x^2}}{\sqrt{2 + x^2}} \] ### Conclusion The final answer is: \[ \sin\left(\cot^{-1}\left[\cos\left(\tan^{-1} x\right)\right]\right) = \frac{\sqrt{1 + x^2}}{\sqrt{2 + x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

sin {cot^(-1)[tan (cos^(-1)x)]=

Evalute sin{cot^(-1)(cos(tan^(-1)1))}

If sin{cot^(-1)(x+1)}=cos(tan^(-1)x), then find x.

Find the value of the expression sin[cot^(-1){cos(tan^(1)1)}]

The value of x for which "sin"(cot^(-1)(1+x))="cos"(tan^(-1)x) is 1/2 (b) 1 (c) 0 (d) -1/2

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE
  1. If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2, then: x=

    Text Solution

    |

  2. If y = cot^(-1)(sqrt(tanalpha))-tan^(-1) (sqrt(tanalpha)), " than: " t...

    Text Solution

    |

  3. sin{cot^(-1)[cos(tan^(-1)x)]}=....

    Text Solution

    |

  4. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than ...

    Text Solution

    |

  5. If sin^(-1)x-cos^(-1)x=(pi)/(6), " then :" x=

    Text Solution

    |

  6. tan^-1((x+1)/(x-1))+tan^-1((x-1)/x)=tan^-1(-7)

    Text Solution

    |

  7. sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

    Text Solution

    |

  8. If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

    Text Solution

    |

  9. sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

    Text Solution

    |

  10. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  11. If tan^(-1) 3 +tan^(-1)x=tan^(-1)87 then x =

    Text Solution

    |

  12. Solve for x: tan^-1(x+1)+tan^-1(x-1)=tan^-1(8/31)

    Text Solution

    |

  13. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  14. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

    Text Solution

    |

  15. If sin^(-1)x=(pi)/(5) " for some x"in(-1,1) , "then : "cos^(-1)x=....

    Text Solution

    |

  16. Simplify the following: Evaluate tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  17. The domain of the function f(x)=(sqrt(9-x^(2)))/(sin^(-1)(3-x)) is

    Text Solution

    |

  18. The domain of the function f(x)=sqrt(5-x)+cos^(-1)((3-2x)/(7)) is

    Text Solution

    |

  19. The domain of the function f(x) = cos ^(-1)((2-x)/(4)) is

    Text Solution

    |

  20. The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-l...

    Text Solution

    |