Home
Class 12
MATHS
sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1...

`sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=`

A

0

B

1

C

`sqrt(2)`

D

`(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) \), we will follow these steps: ### Step 1: Identify the expressions We have two inverse trigonometric functions: 1. \( \tan^{-1}\left(\frac{1-x^2}{2x}\right) \) 2. \( \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \) ### Step 2: Use the identity for \( \cos^{-1} \) Recall that: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] Thus, we can express \( \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \) in terms of sine: \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right) \] ### Step 3: Combine the angles Now we can rewrite the expression: \[ \tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \tan^{-1}\left(\frac{1-x^2}{2x}\right) + \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) \] ### Step 4: Use the addition formula for \( \tan^{-1} \) Using the formula for the sum of two arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] we can set: - \( a = \frac{1-x^2}{2x} \) - \( b = \tan\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) = \cot\left(\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) \) ### Step 5: Simplify the expression After some algebra, we find: \[ \sin\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) = \sin\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \frac{\pi}{2} - \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) \] ### Step 6: Evaluate the sine function The sine of \( \frac{\pi}{2} \) is 1, and thus: \[ \sin\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \frac{\pi}{2}\right) = \cos\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right)\right) \] ### Step 7: Conclusion The sine of the entire expression simplifies to: \[ \sin\left(\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right) = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE (B) Properties of triangles|27 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise HARDER SOLVED EXAMPLES|43 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

The value of tan{(1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))}

If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

(3 sin^(-1)) ((2x)/(1+x^2)) - (4 cos^(-1)) ((1-x^2)/(1 + x^2)) + (2 tan^(-1)) ((2x)/(1-x^2)) = π/3

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MULTIPLE CHOICE QUESTIONS - PART - A : BUILDING-UP THE BASE
  1. If sin^(-1)x-cos^(-1)x=(pi)/(6), " then :" x=

    Text Solution

    |

  2. tan^-1((x+1)/(x-1))+tan^-1((x-1)/x)=tan^-1(-7)

    Text Solution

    |

  3. sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

    Text Solution

    |

  4. If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

    Text Solution

    |

  5. sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

    Text Solution

    |

  6. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  7. If tan^(-1) 3 +tan^(-1)x=tan^(-1)87 then x =

    Text Solution

    |

  8. Solve for x: tan^-1(x+1)+tan^-1(x-1)=tan^-1(8/31)

    Text Solution

    |

  9. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  10. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

    Text Solution

    |

  11. If sin^(-1)x=(pi)/(5) " for some x"in(-1,1) , "then : "cos^(-1)x=....

    Text Solution

    |

  12. Simplify the following: Evaluate tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  13. The domain of the function f(x)=(sqrt(9-x^(2)))/(sin^(-1)(3-x)) is

    Text Solution

    |

  14. The domain of the function f(x)=sqrt(5-x)+cos^(-1)((3-2x)/(7)) is

    Text Solution

    |

  15. The domain of the function f(x) = cos ^(-1)((2-x)/(4)) is

    Text Solution

    |

  16. The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-l...

    Text Solution

    |

  17. The domain of the function f(x)=root(3)(1-3x)+3cos ^(-1)((2x-1)/(3))...

    Text Solution

    |

  18. The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

    Text Solution

    |

  19. The domain of the function f(x)=sqrt(sin^(-1)(log(2)x)) is

    Text Solution

    |

  20. The range of the function sin^(-1)((x^(2))/(1+x^(2))) is

    Text Solution

    |