Home
Class 12
MATHS
If: sin^(-1)(1/2)= tan^(-1)x, then x=...

If: `sin^(-1)(1/2)= tan^(-1)x`, then x=

A

`sqrt(3)`

B

`1//sqrt(3)`

C

`1//sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{1}{2}\right) = \tan^{-1}(x) \), we will follow these steps: ### Step 1: Find the value of \( \sin^{-1}\left(\frac{1}{2}\right) \) We know that \( \sin(\theta) = \frac{1}{2} \) corresponds to a specific angle. The angle whose sine is \( \frac{1}{2} \) is \( 30^\circ \) or \( \frac{\pi}{6} \) radians. \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] ### Step 2: Set up the equation Now we can substitute this value back into our original equation: \[ \frac{\pi}{6} = \tan^{-1}(x) \] ### Step 3: Take the tangent of both sides To eliminate the inverse tangent, we take the tangent of both sides: \[ \tan\left(\frac{\pi}{6}\right) = x \] ### Step 4: Calculate \( \tan\left(\frac{\pi}{6}\right) \) We know from trigonometric values that: \[ \tan\left(\frac{\pi}{6}\right) = \tan(30^\circ) = \frac{1}{\sqrt{3}} \] ### Step 5: Conclude the value of \( x \) Thus, we find that: \[ x = \frac{1}{\sqrt{3}} \] ### Final Answer The value of \( x \) is \( \frac{1}{\sqrt{3}} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If: sin^(-1)x =2 tan^(-1)x , then: x=

If: A= tan^(-1)x , then: sin 2A=

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If sin^(2)(2cos^(-1)(tan x))=1 then x may be

If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)) , then

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6