Home
Class 12
MATHS
tan[(sqrt(1+x^(2))-1)/x]=...

`tan[(sqrt(1+x^(2))-1)/x]`=

A

`tan^(-1)x`

B

`1/2tan^(-1)x`

C

`2.tan^(-1)x`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{\sqrt{1+x^2}-1}{x}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \tan\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] So, the expression becomes: \[ \tan\left(\frac{\sec(\theta) - 1}{\tan(\theta)}\right) \] ### Step 3: Simplify the expression Now, we simplify \( \frac{\sec(\theta) - 1}{\tan(\theta)} \): \[ \frac{\sec(\theta) - 1}{\tan(\theta)} = \frac{\sec(\theta) - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{(\sec(\theta) - 1) \cos(\theta)}{\sin(\theta)} \] Since \( \sec(\theta) = \frac{1}{\cos(\theta)} \), we can rewrite this as: \[ \frac{1 - \cos(\theta)}{\sin(\theta)} \] ### Step 4: Use trigonometric identities Using the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \), we have: \[ \frac{1 - \cos(\theta)}{\sin(\theta)} = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right) \] ### Step 5: Substitute back Now substituting back, we get: \[ \tan\left(\frac{\sec(\theta) - 1}{\tan(\theta)}\right) = \tan\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] ### Step 6: Substitute \( \theta \) back in terms of \( x \) Since we have \( \theta = \tan^{-1}(x) \), we can write: \[ \frac{\theta}{2} = \frac{1}{2} \tan^{-1}(x) \] ### Final Answer Thus, the final result is: \[ \tan\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \frac{1}{2} \tan^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

tan^-1((sqrt(1+x^2)-1)/x)

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

Differentiate tan^(-1)[(sqrt(1+x^(2))-1)/(x)] with respect to x

On differentiating tan^(-1) [ ( sqrt( 1+ x^(2))-1)/( x) ] with respect to x, the result would be

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then