Home
Class 12
MATHS
tan^(-1)[x/sqrt(a^(2)-x^(2))]=...

`tan^(-1)[x/sqrt(a^(2)-x^(2))]=`

A

`1/a.sin^(-1)(x/a)`

B

`a.sin^(-1)(x/a)`

C

`sin^(-1)(x/a)`

D

`sin^(-1)(a/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( a \sin \theta \) Let \( x = a \sin \theta \). This substitution will help simplify the expression. ### Step 2: Rewrite the expression Now, we need to find \( \sqrt{a^2 - x^2} \): \[ \sqrt{a^2 - x^2} = \sqrt{a^2 - (a \sin \theta)^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2(1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta \] ### Step 3: Substitute back into the arctangent function Now substitute \( x \) and \( \sqrt{a^2 - x^2} \) back into the original expression: \[ \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \tan^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right) \] ### Step 4: Simplify the expression The \( a \) in the numerator and denominator cancels out: \[ \tan^{-1}(\tan \theta) \] ### Step 5: Apply the inverse tangent property Since \( \tan^{-1}(\tan \theta) = \theta \) (for \( \theta \) in the range of \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)): \[ \tan^{-1}(\tan \theta) = \theta \] ### Step 6: Substitute back for \( \theta \) Recall that \( \theta = \sin^{-1}\left(\frac{x}{a}\right) \): \[ \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \sin^{-1}\left(\frac{x}{a}\right) \] ### Final Result Thus, the final result is: \[ \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \sin^{-1}\left(\frac{x}{a}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Find the range of f(x)=tan^(-1)sqrt((x^(2)-2x+2))

Differentiate tan^(-1){x/(a+sqrt(a^2-x^2))}, -a

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Differentiate the functions with respect to x:tan^(-1){(sqrt(1+a^(2)x^(2))-1)/(ax)},x!=0

Write each of the following in the simplest form: tan^(-1){x/(a+sqrt(a^2-x^2))}, -a

Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))

Differentiate the following function with respect to x:tan^(-1){(sqrt(1+a^(2)x^(2))-1)/(ax)},x!=0

Differentiate tan^(-1)(x)/(1+sqrt((1-x^(2))))+{2tan^(-1)sqrt(((1-x)/(1+x)))}sin w.r.t.x