Home
Class 12
MATHS
sin^(-1)[sqrt(x/(a+x))]=...

`sin^(-1)[sqrt(x/(a+x))]=`

A

`cos^(-1)sqrt(x/a)`

B

`cos^(-1)sqrt(x/a)`

C

`tan^(-1)sqrt(x/a)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int sin^(-1)sqrt((x)/(x+a))

sin^(-1) (sqrt(x/(x+a))) = tan^(-1) (______).

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

sin^(-1)[sqrt(x^(2)-x^(3))- sqrt(x-x^(3))]=

Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^(2)+x+1))] [.] denotes the greatest integer function.

Evaluate :int_(0)^(1)(sin^(-1)sqrt(x))/(x^(2)-x+1)dx

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is