Home
Class 12
MATHS
If: sin(sin^(-1)(1/5) + cos^(-1)x)=1, th...

If: `sin(sin^(-1)(1/5) + cos^(-1)x)=1`, then: x=

A

1

B

0

C

`4/5`

D

`1/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\sin^{-1}(1/5) + \cos^{-1}(x)) = 1 \), we can follow these steps: ### Step 1: Understand the equation The equation states that the sine of the sum of two angles is equal to 1. We know that \( \sin(\theta) = 1 \) when \( \theta = \frac{\pi}{2} + 2n\pi \) for any integer \( n \). For simplicity, we will consider \( n = 0 \), so we have: \[ \sin(\sin^{-1}(1/5) + \cos^{-1}(x)) = 1 \implies \sin^{-1}(1/5) + \cos^{-1}(x) = \frac{\pi}{2} \] ### Step 2: Rearranging the equation From the equation above, we can rearrange it to isolate \( \cos^{-1}(x) \): \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(1/5) \] ### Step 3: Use the identity for inverse trigonometric functions We know that: \[ \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( \cos^{-1}(x) \) in terms of \( \sin^{-1}(x) \): \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] ### Step 4: Equate the two expressions for \( \cos^{-1}(x) \) Now we can set the two expressions for \( \cos^{-1}(x) \) equal to each other: \[ \frac{\pi}{2} - \sin^{-1}(1/5) = \frac{\pi}{2} - \sin^{-1}(x) \] ### Step 5: Simplify the equation By simplifying, we can eliminate \( \frac{\pi}{2} \) from both sides: \[ \sin^{-1}(1/5) = \sin^{-1}(x) \] ### Step 6: Solve for \( x \) Since the inverse sine function is one-to-one in the range \([-1, 1]\), we can conclude: \[ x = \frac{1}{5} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{1}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If sin ("sin"^(-1)(1)/(5)+ "cos"^(-1)x)=1 , then what is x equal to ?

If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1 , then find the value of x

If sin(sin^(-1)(1)/(5)+cos^(-1)x)=1 then find the value of x.

If sin (sin^(-1)(3/5)+cos^(-1)x)=1 then find value of x.

If sin(sin^(-1)((1)/(5))+cos^(-1)(x))=1 Find the value of x.

If sin(sin^(-1)((1)/(5))+cos^(-1)(x))=1 Find the value of x

Solve for x : Sin(sin^(-1)( 1/5) + cos^(-1) x) = 1