Home
Class 12
MATHS
tan(cos^(-1)x)=...

`tan(cos^(-1)x)=`

A

`sqrt(1-x^(2))/x`

B

`x/(1+x^(2))`

C

`sqrt(1+x^(2))/x`

D

`sqrt(1-x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan(\cos^{-1} x) \), we can follow these steps: ### Step 1: Let \( \theta = \cos^{-1} x \) This means that \( x = \cos \theta \). ### Step 2: Construct a right triangle In a right triangle, if \( \theta \) is one of the angles, then: - The adjacent side (base) to angle \( \theta \) is \( x \). - The hypotenuse is \( 1 \) (since \( \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \)). ### Step 3: Find the length of the opposite side Using the Pythagorean theorem: \[ \text{opposite}^2 + \text{adjacent}^2 = \text{hypotenuse}^2 \] Let the length of the opposite side be \( h \). Then: \[ h^2 + x^2 = 1^2 \] \[ h^2 = 1 - x^2 \] \[ h = \sqrt{1 - x^2} \] ### Step 4: Calculate \( \tan \theta \) The tangent of angle \( \theta \) is given by: \[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{x} = \frac{\sqrt{1 - x^2}}{x} \] ### Step 5: Substitute back to find \( \tan(\cos^{-1} x) \) Thus, we have: \[ \tan(\cos^{-1} x) = \frac{\sqrt{1 - x^2}}{x} \] ### Final Answer Therefore, the value of \( \tan(\cos^{-1} x) \) is: \[ \boxed{\frac{\sqrt{1 - x^2}}{x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

If 2tan^(-1)(cos x)=tan^(-1)(2cos ecx) then sin x+cos x=

If p_(0) is the solution of the equation [sin cos^(-1)(cos(tan^(-1)x))]=cos^(-1)p, then

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Draw the graph of y=tan^(-1)x+cos^(-1)x+sin^(-1)x .

sin{cot^(-1)[cos(tan^(-1)x)]}=....