Home
Class 12
MATHS
cot(cosec ^(-1)(5/3) + tan^(-1)(2/3))=...

`cot(cosec ^(-1)(5/3) + tan^(-1)(2/3))=`

A

`3/17`

B

`4/17`

C

`5/17`

D

`6/17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \), we will follow these steps: ### Step 1: Let \( \theta = \csc^{-1}\left(\frac{5}{3}\right) \) This means that \( \csc(\theta) = \frac{5}{3} \). ### Step 2: Convert \( \csc(\theta) \) to \( \sin(\theta) \) From the definition of cosecant, we have: \[ \sin(\theta) = \frac{1}{\csc(\theta)} = \frac{3}{5} \] ### Step 3: Use the Pythagorean theorem to find \( \cos(\theta) \) We can form a right triangle where the opposite side is 3 and the hypotenuse is 5. To find the adjacent side (base), we use: \[ \text{base} = \sqrt{\text{hypotenuse}^2 - \text{opposite}^2} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] Thus, \( \cos(\theta) = \frac{4}{5} \). ### Step 4: Find \( \tan(\theta) \) Using the definition of tangent: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{3}{4} \] ### Step 5: Substitute \( \tan(\theta) \) into the expression Now we can express \( \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \) as: \[ \cot\left(\theta + \tan^{-1}\left(\frac{2}{3}\right)\right) \] ### Step 6: Use the formula for \( \tan^{-1}(a) + \tan^{-1}(b) \) Using the formula: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = \tan(\theta) = \frac{3}{4} \) and \( b = \frac{2}{3} \). ### Step 7: Calculate \( a + b \) and \( 1 - ab \) 1. Calculate \( a + b \): \[ \frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] 2. Calculate \( ab \): \[ ab = \frac{3}{4} \cdot \frac{2}{3} = \frac{6}{12} = \frac{1}{2} \] Thus, \( 1 - ab = 1 - \frac{1}{2} = \frac{1}{2} \). ### Step 8: Substitute into the formula Now we have: \[ \tan^{-1}\left(\frac{\frac{17}{12}}{\frac{1}{2}}\right) = \tan^{-1}\left(\frac{17 \cdot 2}{12}\right) = \tan^{-1}\left(\frac{34}{12}\right) = \tan^{-1}\left(\frac{17}{6}\right) \] ### Step 9: Find \( \cot\left(\theta + \tan^{-1}\left(\frac{2}{3}\right)\right) \) Thus: \[ \cot\left(\theta + \tan^{-1}\left(\frac{2}{3}\right)\right) = \cot\left(\tan^{-1}\left(\frac{17}{6}\right)\right) \] Using the identity \( \cot(\tan^{-1}(x)) = \frac{1}{x} \): \[ \cot\left(\tan^{-1}\left(\frac{17}{6}\right)\right) = \frac{6}{17} \] ### Final Answer Therefore, the final answer is: \[ \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) = \frac{6}{17} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

cot[csc^(-1)(5/3) + tan^(-1)(2/3)] = ....

The value of cot(csc^(-1)(5)/(3)+tan^(-1)((2)/(3)))is

Evaluate the following (i) sin ( cosec ^(-1) 5/3)" "(ii) cot ( tan^(-1). 3/4)

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

cosec^(-1)(-sqrt(2))+cot^(-1)(sqrt(3))=

cot^(-1)3+cosec^(-1)sqrt(5)=

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)