Home
Class 12
MATHS
If: tan^(-1)x = sin^(-1)(3/sqrt(10)), th...

If: `tan^(-1)x = sin^(-1)(3/sqrt(10))`, then: x=

A

3

B

`-3`

C

`1/3`

D

`-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} x = \sin^{-1} \left( \frac{3}{\sqrt{10}} \right) \), we can follow these steps: ### Step 1: Set \( \tan^{-1} x \) as \( \theta \) Let \( \theta = \tan^{-1} x \). This implies that \( x = \tan \theta \). **Hint:** Remember that the tangent function relates the opposite side to the adjacent side in a right triangle. ### Step 2: Relate \( \sin^{-1} \left( \frac{3}{\sqrt{10}} \right) \) to \( \theta \) From the equation, we have: \[ \theta = \sin^{-1} \left( \frac{3}{\sqrt{10}} \right) \] **Hint:** The sine function gives the ratio of the opposite side to the hypotenuse in a right triangle. ### Step 3: Construct a right triangle In the triangle corresponding to \( \theta \): - The opposite side = 3 - The hypotenuse = \( \sqrt{10} \) Using the Pythagorean theorem, we can find the adjacent side: \[ \text{Adjacent} = \sqrt{\text{Hypotenuse}^2 - \text{Opposite}^2} = \sqrt{10 - 9} = 1 \] **Hint:** Use the Pythagorean theorem \( a^2 + b^2 = c^2 \) to find the missing side. ### Step 4: Find \( \tan \theta \) Now we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3}{1} = 3 \] **Hint:** Recall that tangent is the ratio of the opposite side to the adjacent side. ### Step 5: Substitute back to find \( x \) Since \( x = \tan \theta \), we have: \[ x = 3 \] **Hint:** Ensure that you substitute back correctly to find the value of \( x \). ### Conclusion Thus, the value of \( x \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

The value of tan((sin^(-1)x+cos^(-1)x)/(2)) , when x = (sqrt(3))/(2) , is "……." .

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then