Home
Class 12
MATHS
If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan...

If: `tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0`, then: x=

A

`7/3`

B

3

C

`11/3`

D

`13/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{3}{4}\right) - \tan^{-1}\left(\frac{x}{3}\right) = 0 \), we can follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation to isolate the inverse tangent term: \[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \tan^{-1}\left(\frac{x}{3}\right) \] **Hint:** Remember that if \( A + B = C \), then you can express it as \( A + B - C = 0 \). ### Step 2: Using the Formula for the Sum of Inverse Tangents We can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( ab < 1 \). In our case, let \( a = \frac{1}{3} \) and \( b = \frac{3}{4} \): \[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{3}{4}}{1 - \frac{1}{3} \cdot \frac{3}{4}}\right) \] **Hint:** Ensure that the product \( ab \) is less than 1 before applying the formula. ### Step 3: Calculating the Numerator and Denominator Now, we calculate the numerator and denominator: 1. **Numerator**: \[ \frac{1}{3} + \frac{3}{4} = \frac{4 + 9}{12} = \frac{13}{12} \] 2. **Denominator**: \[ 1 - \left(\frac{1}{3} \cdot \frac{3}{4}\right) = 1 - \frac{1}{4} = \frac{3}{4} \] So we have: \[ \tan^{-1}\left(\frac{13/12}{3/4}\right) = \tan^{-1}\left(\frac{13 \cdot 4}{12 \cdot 3}\right) = \tan^{-1}\left(\frac{52}{36}\right) = \tan^{-1}\left(\frac{13}{9}\right) \] **Hint:** Simplifying fractions can help in finding a clearer result. ### Step 4: Setting the Two Inverse Tangents Equal Now we have: \[ \tan^{-1}\left(\frac{13}{9}\right) = \tan^{-1}\left(\frac{x}{3}\right) \] **Hint:** If \( \tan^{-1}(A) = \tan^{-1}(B) \), then \( A = B \). ### Step 5: Equating the Arguments From the equality of the inverse tangents, we can equate the arguments: \[ \frac{13}{9} = \frac{x}{3} \] ### Step 6: Solving for \( x \) Now, we can solve for \( x \): \[ x = \frac{13}{9} \cdot 3 = \frac{39}{9} = \frac{13}{3} \] Thus, the final answer is: \[ \boxed{\frac{13}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)3 + tan^(-1)4=

Find x if tan^(-1)(x) = tan^(-1)(1/2) + tan^(-1)(3/7)

If tan^(-1)3+ tan^(-1)x = tan^(-1)8 , then: x=

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)/(3))

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))then x is

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=