Home
Class 12
MATHS
sin {cot^(-1)[tan (cos^(-1)x)]=...

`sin {cot^(-1)[tan (cos^(-1)x)]=`

A

x

B

`pi/2`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin \left( \cot^{-1} \left[ \tan \left( \cos^{-1} x \right) \right] \right) \), we will break it down step by step. ### Step 1: Simplify \( \tan(\cos^{-1} x) \) Let \( \theta = \cos^{-1} x \). Then, by definition of cosine, we have: \[ \cos \theta = x \] To find \( \tan \theta \), we need to find the opposite side of the triangle formed. Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] we can find \( \sin \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - x^2 \implies \sin \theta = \sqrt{1 - x^2} \] Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{1 - x^2}}{x} \] ### Step 2: Substitute into \( \cot^{-1} \) Now we substitute this into \( \cot^{-1} \): \[ \cot^{-1} \left( \tan(\cos^{-1} x) \right) = \cot^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) \] Using the identity \( \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \): \[ \cot^{-1} \left( \frac{\sqrt{1 - x^2}}{x} \right) = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \] ### Step 3: Find \( \sin \left( \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \right) \) Let \( \phi = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right) \). We need to find \( \sin \phi \): \[ \tan \phi = \frac{x}{\sqrt{1 - x^2}} \] This implies that in a right triangle, the opposite side is \( x \) and the adjacent side is \( \sqrt{1 - x^2} \). The hypotenuse \( h \) can be calculated as: \[ h = \sqrt{x^2 + (1 - x^2)} = \sqrt{1} \] Thus, \( h = 1 \). Now we can find \( \sin \phi \): \[ \sin \phi = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{1} = x \] ### Final Answer Therefore, we have: \[ \sin \left( \cot^{-1} \left[ \tan \left( \cos^{-1} x \right) \right] \right) = x \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

sin{cot^(-1)[cos(tan^(-1)x)]}=....

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-

What is sin [cot^(-1){cos(tan^(-1)x)] where x gt 0, equal to ?

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

What is sin[cot^(-1)[cos(tan^(-1)x)] where xgt0 , equal to ?

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Evalute sin{cot^(-1)(cos(tan^(-1)1))}