Home
Class 12
MATHS
If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-...

If: `tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36)`. Then: x=

A

`3/4, -3/8`

B

`3/4, 3/8`

C

`4/3, 3/8`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x-1}{x+1}\right) + \tan^{-1}\left(\frac{2x-1}{2x+1}\right) = \tan^{-1}\left(\frac{23}{36}\right), \] we will use the formula for the sum of arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Let \[ a = \frac{x-1}{x+1} \quad \text{and} \quad b = \frac{2x-1}{2x+1}. \] ### Step 2: Calculate \(a + b\) \[ a + b = \frac{x-1}{x+1} + \frac{2x-1}{2x+1}. \] To add these fractions, we need a common denominator: \[ a + b = \frac{(x-1)(2x+1) + (2x-1)(x+1)}{(x+1)(2x+1)}. \] Expanding the numerators: \[ (x-1)(2x+1) = 2x^2 + x - 2x - 1 = 2x^2 - x - 1, \] \[ (2x-1)(x+1) = 2x^2 + 2x - x - 1 = 2x^2 + x - 1. \] Combining these: \[ a + b = \frac{(2x^2 - x - 1) + (2x^2 + x - 1)}{(x+1)(2x+1)} = \frac{4x^2 - 2}{(x+1)(2x+1)} = \frac{2(2x^2 - 1)}{(x+1)(2x+1)}. \] ### Step 3: Calculate \(1 - ab\) Next, we calculate \(ab\): \[ ab = \left(\frac{x-1}{x+1}\right)\left(\frac{2x-1}{2x+1}\right) = \frac{(x-1)(2x-1)}{(x+1)(2x+1)}. \] Expanding the numerator: \[ (x-1)(2x-1) = 2x^2 - x - 2x + 1 = 2x^2 - 3x + 1. \] Thus, \[ ab = \frac{2x^2 - 3x + 1}{(x+1)(2x+1)}. \] Now, we calculate \(1 - ab\): \[ 1 - ab = 1 - \frac{2x^2 - 3x + 1}{(x+1)(2x+1)} = \frac{(x+1)(2x+1) - (2x^2 - 3x + 1)}{(x+1)(2x+1)}. \] Expanding the numerator: \[ (x+1)(2x+1) = 2x^2 + x + 2x + 1 = 2x^2 + 3x + 1. \] Thus, \[ 1 - ab = \frac{(2x^2 + 3x + 1) - (2x^2 - 3x + 1)}{(x+1)(2x+1)} = \frac{6x}{(x+1)(2x+1)}. \] ### Step 4: Set up the equation Now we can substitute \(a + b\) and \(1 - ab\) into the arctangent sum formula: \[ \tan^{-1}\left(\frac{2(2x^2 - 1)}{(x+1)(2x+1)}\right) = \tan^{-1}\left(\frac{23}{36}\right). \] This gives us: \[ \frac{2(2x^2 - 1)}{(x+1)(2x+1)} = \frac{23}{36}. \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ 2(2x^2 - 1) \cdot 36 = 23 \cdot (x+1)(2x+1). \] Expanding both sides: \[ 72(2x^2 - 1) = 23(2x^2 + 3x + 1). \] Distributing: \[ 144x^2 - 72 = 46x^2 + 69x + 23. \] ### Step 6: Rearranging the equation Rearranging gives: \[ 144x^2 - 46x^2 - 69x - 72 - 23 = 0, \] \[ 98x^2 - 69x - 95 = 0. \] ### Step 7: Solving the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{69 \pm \sqrt{(-69)^2 - 4 \cdot 98 \cdot (-95)}}{2 \cdot 98}. \] Calculating the discriminant: \[ b^2 - 4ac = 4761 + 37240 = 42001. \] Thus, \[ x = \frac{69 \pm \sqrt{42001}}{196}. \] ### Step 8: Finding the roots Calculating the roots will give us the values of \(x\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MASTERING THE BEST - ALL TOPICS|128 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART - B : MASTERING THE BEST|58 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

tan ^ (- 1) ((x + 1) / (x-1)) + tan ^ (- 1) ((x-1) / (x)) = tan ^ (- 1) (- 7)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4