Home
Class 12
MATHS
sin^(2) 75^(@) - sin^(2)15^(@)=...

`sin^(2) 75^(@) - sin^(2)15^(@)=`

A

`1/2`

B

`sqrt(3)/2`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2 75^\circ - \sin^2 15^\circ \), we can use the identity for the difference of squares. The formula we will use is: \[ A^2 - B^2 = (A + B)(A - B) \] ### Step-by-Step Solution: 1. **Identify A and B:** Let \( A = \sin 75^\circ \) and \( B = \sin 15^\circ \). 2. **Apply the Difference of Squares Formula:** Using the formula \( A^2 - B^2 = (A + B)(A - B) \), we have: \[ \sin^2 75^\circ - \sin^2 15^\circ = (\sin 75^\circ + \sin 15^\circ)(\sin 75^\circ - \sin 15^\circ) \] 3. **Calculate \( \sin 75^\circ + \sin 15^\circ \):** We can use the sine addition formula: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Here, \( A = 75^\circ \) and \( B = 15^\circ \): \[ \sin 75^\circ + \sin 15^\circ = 2 \sin\left(\frac{75^\circ + 15^\circ}{2}\right) \cos\left(\frac{75^\circ - 15^\circ}{2}\right) \] \[ = 2 \sin(45^\circ) \cos(30^\circ) \] 4. **Calculate \( \sin 75^\circ - \sin 15^\circ \):** We can use the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] \[ \sin 75^\circ - \sin 15^\circ = 2 \cos\left(\frac{75^\circ + 15^\circ}{2}\right) \sin\left(\frac{75^\circ - 15^\circ}{2}\right) \] \[ = 2 \cos(45^\circ) \sin(30^\circ) \] 5. **Substituting Back:** Now substituting back into our expression: \[ \sin^2 75^\circ - \sin^2 15^\circ = (2 \sin(45^\circ) \cos(30^\circ))(2 \cos(45^\circ) \sin(30^\circ)) \] \[ = 4 \sin(45^\circ) \cos(30^\circ) \cos(45^\circ) \sin(30^\circ) \] 6. **Substituting Values:** Using known values: - \( \sin(45^\circ) = \frac{1}{\sqrt{2}} \) - \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \) - \( \cos(45^\circ) = \frac{1}{\sqrt{2}} \) - \( \sin(30^\circ) = \frac{1}{2} \) We get: \[ = 4 \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) \] \[ = 4 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{4 \sqrt{3}}{8} = \frac{\sqrt{3}}{2} \] ### Final Answer: \[ \sin^2 75^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

What is the value of sin^(2) 15^(@) + sin^(2) 20^(@) + sin^(2)25^(@) + ……… + sin^(2) 75^(@) ?

Without using trigonometric table, evaluate the following: (sin ^(2) 25 ^(@) + sin ^(2) 65^(@))+sqret3 (tan 5 ^(@). Tan15^(@).tan30^(@).tan75^(@).tan85^(@))

32sin^(6)15^(@)-48sin^(4)15^(@)+18sin^(2)15^(@)=

Find the value of sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@) .

cos ^ (2) 45 ^ (@) - sin ^ (2) 15 ^ (@) =

sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ .....+sin^(2)85^(@)+sin^(2)90^(@) is equal to

Evaluate : sin^(2)25^(@)+sin^(2)65^(@)+sqrt(3)tan5^(@)tan15^(@)tan30^(@)tan75^(@)tan85^(@)

The value of : "sin"^(2)(15^(@)+x)-"sin"^(2)(15^(@)-x) =…….

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MASTERING THE BEST - ALL TOPICS
  1. If tan A - tan B =x and cot B - cot A=y, then: cot(A-B)=

    Text Solution

    |

  2. If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

    Text Solution

    |

  3. sin^(2) 75^(@) - sin^(2)15^(@)=

    Text Solution

    |

  4. If triangleABC is a right angled at A, then: cos^(2)B + cos^(2)C=

    Text Solution

    |

  5. sin^(6)A + cos^(6)A + 3sin^(2)A.cos^(2)A=

    Text Solution

    |

  6. If cos(A-B) = 3/5 and tanA.tanB=2, then

    Text Solution

    |

  7. If ABCD is a cyclic quadrilateral, then the value of cosA-cosB+cosC-co...

    Text Solution

    |

  8. If sin alpha/2 + cos alpha/2=1.4, then: sin alpha cos alpha=

    Text Solution

    |

  9. If tan alpha + cot alpha =m, then: tan^(4)alpha +cot^(4)alpha=

    Text Solution

    |

  10. If cos theta+cos phi=a and sin theta - sin phi=b, then: 2cos(theta + p...

    Text Solution

    |

  11. If sin x + "cosec"x=2, then, for all n in N, the value of: sin^(n)x + ...

    Text Solution

    |

  12. If sin^(-1)x= theta +phi and sin^(-1)y = theta - phi, then: 1+xy=

    Text Solution

    |

  13. If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2, then: x=

    Text Solution

    |

  14. If two angles of a triangle are cot^(-1)2 and cot^(-1)3, then the thir...

    Text Solution

    |

  15. sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

    Text Solution

    |

  16. If sin^(-1)x + sin^(-1)y =(2pi)/3, then: cos^(-1)x +cos^(-1)y=

    Text Solution

    |

  17. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  18. If sinA+ sin B + sinC=(3sqrt(3))/2, then: triangleABC, is

    Text Solution

    |

  19. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  20. If tan x =b/a, then the value of (a cos 2x+ b sin 2x) is equal to-

    Text Solution

    |